
Requirements
Content adapted from CSE403 14sp by Michael Ernst

Outline
- What are requirements?

- How can we gather requirements?

- How can we document requirements?

- Use cases

Software Requirements
Requirements specify what to build:

- tell “what” and not “how”

- tell the problem, not the solution

- reflect system design, not software design

“what vs. how”: it’s relative
One person’s what is another person’s how.

– “One person’s constant is another person’s variable.” [Perlis]

- Input file processing is the what, parsing is the how

- Parsing is the what, a stack is the how

- A stack is the what, an array or a linked list is the how

- A linked list is the what, a doubly linked list is the how

- A doubly linked list is the what, Node* is the how

Why Requirements?
Some goals of doing requirements:

- understand precisely what is required of the software

- communicate this understanding precisely to all development

parties

- control production to ensure that system meets specs

(including changes)

Roles of Requirements
- customers:

show what should be delivered; contractual base

- managers:

a scheduling / progress indicator

- designers:

provide a spec to design

- coders:

list a range of acceptable implementations / output

- QA / testers:

a basis for testing, validation, verification

Classifying requirements
The classic way to classify requirements:

- functional: map inputs to outputs

- nonfunctional: other constraints

Another way to classify them (S. Faulk, U. of Oregon):

- Behavioral (user-visible): about the artifact (often

measurable)

- Development quality attributes: about the process (can be

subjective)

Gather requirements from users

The #1 reason that projects succeed is user involvement

 – Standish group survey of over 8000 projects

Why Working with Customer?
- Improves perceived development speed

- They don’t always know what they want

- They do know what they want, and it changes over time

"Digging" for requirements
Do:

- Talk to the users, or work with them, to learn how they work.

- Ask questions throughout the process to "dig" for

requirements.

- Think about why users do something in your app, not just

what.

- Allow (and expect) requirements to change later.

"Digging" for requirements
Don't:

- Describe complex business logic or rules of the system.

- Be too specific or detailed.

- Describe the exact user interface used to implement a feature.

- Try to think of everything ahead of time. (You will fail.)

- Add unnecessary features not wanted by the customers.

Feature Creep

feature creep: Gradual accumulation of features over time.

– Often has a negative overall effect on a large software project.

Good or bad requirements? (and why?)

- The system will enforce 6.5% sales tax on Washington

purchases.

- The system shall display the elapsed time for the car to make

one circuit around the track within 5 seconds, in hh:mm:ss

format.

- The product will never crash. It will also be secure against

hacks.

Good or bad requirements? (and why?)

- The server backend will be written using PHP or Ruby on

Rails.

- The system will support a large number of connections at

once, and each user will not experience slowness or lag.

- The user can choose a document type from the drop-down

list.

How do we specify requirements?
- Prototype

- Use Cases

- Feature List

- Paper UI prototype

Use cases
- A use case is an example behavior of the system

- A use case characterizes a way of using a system

- It represents a dialog between a user and the system, from

the user’s point of view

- It captures functional requirements

Qualities of a good use case
- starts with a request from an actor to the system

- ends with the production of all the answers to the request

- defines the interactions (between system and actors) related

to the function

- takes into account the actor's point of view, not the system's

Qualities of a good use case
- focuses on interaction, not internal system activities

- NO GUI in detail

- has 3-9 steps in the main success scenario

- is easy to read

- summary fits on a page

Informal Use Case

Formal Use Case
Goal Patron wishes to reserve a book using the online catalog

Primary actor Patron

Scope Library system

Level User

Precondition Patron is at the login screen

Success end condition Book is reserved

Failure end condition Book is not reserved

Trigger Patron logs into system

Formal Use Case
Main Success Scenario 1. Patron enters account and password

2. System verifies and logs patron in
3. System presents catalog with search screen
4. Patron enters book title
5. System finds match and presents location choices to patron
6. Patron selects location and reserves book
7. System confirms reservation and re-presents catalog

Extensions
(error scenarios)

2a. Password is incorrect
 2a.1 System returns patron to login screen
 2a.2 Patron backs out or tries again
5a. System cannot find book
 5a.1 …

Variations
(alternative scenarios)

 4. Patron enters author or subject

