
Example projects
UW CSE 403

March 30, 2016

Michael Ernst

Outline

• Concurrency: name protection vs. value protection

• Stack Overflow parsing

• Minimizing bug fixes

• Prevent index-out-of-bounds errors

• Purity or side effect analysis

• Generating tests from documentation

Concurrency: name protection vs. value
protection

Thread 1
balance = balance + deposit;

Thread 2
balance = balance + deposit;

Suppose:
• I start with a balance of $100
• I deposit $50 at ATM 1
• My spouse deposits $25 at ATM 2
What is the final value of balance?

Solution: locking

Object myLock;

@GuardedBy("myLock") int balance;

// legal
synchronized(myLock) {

balance = balance + deposit;
}

// illegal
balance = balance + deposit;

Standard semantics of @GuardedBy is
unsound: protects names, not values
Object myLock;

@GuardedBy("myLock") List<String> words;

// legal

synchronized(myLock) {

words.add("hello");

}

// illegal

words.add("hello");

// Permitted by name protection!

List<String> otherList;

synchronized(myLock) {

otherList = words; // OK, because myLock is currently held

}

otherList.add("hello"); // PROBLEM: may occur in parallel with other operations

Solution: value protection

Object myLock;

@GuardedBy("myLock") List<String> words;

@GuardedBy("myLock") List<String> otherList;

synchronized(myLock) {

otherList = words; // OK!

}

otherList.add("hello"); // forbidden

synchronized(myLock) {

otherList.add("hello"); // OK

}

A value-protection implementation exists

• Evaluate it

• Current practice
• What do programmers think @GuardedBy means?

• Do programmers use it as documented?

• Do programs have latent concurrency bugs?

• Usability
• Is the value-protection semantics easy to understand and use?

• Use it on some real programs, make suggestions and enhancements

Stack Overflow parsing

• Stack Overflow helps programmers

• How can it help tools?

Examples:

• Summarize source code

• Autocomplete or code snippet suggestions

• Code generation from English text

Problem: naïve use of Stack Overflow

• Text = title of the question

• Code = first code snippet in the accepted answer

Example Stack Overflow question and answer

“How can I merge two Python dictionaries?”

http://stackoverflow.com/questions/38987/how-can-i-merge-two-
python-dictionaries-in-a-single-expression

http://stackoverflow.com/questions/38987/how-can-i-merge-two-python-dictionaries-in-a-single-expression

Stack Overflow parsing

Problems with standard techniques:

• Question titles are often short or non-descriptive

• Text in the answer often serves an important explanatory purpose

• Answers often have multiple code snippets.
• It may be necessary to concatenate two snippets in order to achieve a particular

goal.
• An answer may give two different ways to solve a problem, in which case the two

snippets should not be merged.

Goal: better parsing, or at least segmentation into distinct parts

Evaluation: re-run previous experiments; improvements?

Minimizing bug fixes

diff --git a/java/src/plume/MathMDE.java.jpp
b/java/src/plume/MathMDE.java.jpp

index b6dcf96..cbcaf9c 100644

--- a/java/src/plume/MathMDE.java.jpp

+++ b/java/src/plume/MathMDE.java.jpp

@@ -353,19 +353,19 @@ public final class MathMDE {

return pow_fast(base, expt);

}

- private static int pow_fast(int base, int expt) throws ArithmeticException {

- if (expt < 0) {

- throw new ArithmeticException("Negative exponent passed to pow");

+ private static int pow_fast(int a, int exp) throws ArithmeticException {

+ if (exp < 0) {

+ throw new ArithmeticException("Arg should be positive");

}

- int this_square_pow = base;

+ int this_square_pow = a;

int result = 1;

- while (expt>0) {

- if ((expt & 1) != 0) {

+ while (exp>=0) {

+ if ((exp & 1) != 0) {

result *= this_square_pow;

}

- expt >>= 1;

- this_square_pow *= this_square_pow;

+ exp >>= 1;

+ this_square_pow*=this_square_pow;

}

return result;

}

Minimizing bug fixes

Every commit should have a single purpose:
• add a feature
• fix a bug
• refactor
In practice each commit mixes multiple distinct changes
• harder for programmers and tools to interpret.

Goal: minimize a patch
• Example: find the smallest part of the patch that fixes the bug
• Leave out documentation changes, variable renaming, refactorings, …

Prevent index-out-of-bounds errors

int i = -1;

... a[i] ... // run-time error

int j = myList.size();

... myList.get(j) ... // run-time error

It’s better to prevent an error at compile time than to have a user
discover it at run time

Compile-time checking via type systems

The Java compiler already gives warnings about certain types of errors:

String s = "hello";

... a[s] ... // compile-time error

Goal: compiler also warns about index-out-of-bounds errors

CSE 331 showed how to prove that all array/list dereferences are within
bounds

• It was a manual, tedious process

Idea: extend Java’s type system

• If program type-checks, every index is within bounds

• Tool called the Checker Framework (http://CheckerFramework.org/)
makes it easy to write a type system

• User can write annotations within Java 8 syntax

Evaluate with case studies

http://checkerframework.org/

Purity or side effect analysis

if (this.myField != null) {

int x = this.computeValue();

... this.myField.toString() ... // can this line suffer a null pointer exception?

}

It can! The reason is that the computeValue method might set myField to null.

A "pure" procedure:

• performs no visible side effects, and

• returns the same value when it is called twice on the same values.

There are many other uses for purity besides this analysis

Purity implementation and evaluation

• Idea: re-implement the analysis in Salcianu and Rinard's paper
"Purity and Side Effect Analysis for Java Programs“
• jppa tool was widely used, but has not been maintained

• Java tools are much better now, so re-implementation should be
straightforward

• Evaluation:
• Against other tools for purity analysis

• Plugged into downstream tools (nullness analysis, test generation, etc.)

• May find ways to improve the purity analysis, too.

Generating tests from documentation

/**

* Checks to see whether the comparator

* is now locked against further changes.

* @throws UnsupportedOperationException

* if the comparator is locked

*/

protected void checkLocked() {...}

void test() {

FixedOrderComparator c = new FixedOrderComparator(...);

...

c.compare(...);

...

if (c.isLocked()) {

try {

c.checkLocked();

fail();

} catch(UnsupportedOperationException e) {

// Expected Exception!

}

} else {

c.checkLocked();

}

}

Goal: generate tests from English
documentation
• Parse descriptions such as "throws NullPointerException if any element of the

array is null“

• Assume that the programmer already has test inputs
• the only question is whether the code's behavior is correct

A prototype tool exists

Challenges:

• Better natural language processing and pattern-matching to recognize
documentation that programmers write

• Evaluating the tool: given English documentation and the tool's output, are its
assertions correct and sufficient?
• Idea: Pay programmers to produce goal files, via a crowdsourcing platform.
• Experimental design: can you trust the programmers?

More sources of ideas

Mike’s ideas:

• http://homes.cs.washington.edu/~mernst/uw-
only/research/potential-research-projects.html

• https://rawgit.com/randoop/randoop/master/doc/projectideas.html

• https://raw.githubusercontent.com/codespecs/daikon/master/doc/to
do.txt

• https://github.com/typetools/checker-
framework/blob/wiki/Ideas.md

A better source of ideas:

• Your experience, and your frustrations when developing software

http://homes.cs.washington.edu/~mernst/uw-only/research/potential-research-projects.html
https://rawgit.com/randoop/randoop/master/doc/projectideas.html
https://raw.githubusercontent.com/codespecs/daikon/master/doc/todo.txt
https://github.com/typetools/checker-framework/blob/wiki/Ideas.md

