
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Fall 2016
courses.cs.washington.edu/courses/cse403/16au/

Conclusion

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16au/

Outline

2

• Final release and demo

• A brief recap of CSE 403

• Beyond CSE 403

finishfinal release and demo

Logistics and dates for the final release & demos

4

• Final release on Tuesday, Dec 06, at 11pm

• Final version of your product!

• SRS revision

• Requirements & schedule postmortem

• Final product demos on Wednesday, Dec 07, and
Friday, Dec 09, in class

• Must include all team members who have not
presented yet

• Individual reflections on Friday, Dec 09, at 11pm

recapa brief recap of CSE 403

Software lifecycle

6

• Determines the order for Requirements, Design,
Implementation, Testing, and Maintenance.

• Goal: Perform work as early as practical

• Costly to discover bugs or make changes late

• Costly to make decisions too early

• Costly to do tasks multiple times

• In CSE 403, we followed an iterative process

Cycle

LifeSoftware

Requirements

7

• “What” not “how.”

• Reflects user rather than developer view of the system.

• A common technique for expressing requirements: use cases.

• Get feedback early (example: paper prototype).

Library patron

Check out book

Architecture

8

• Provides a high-level framework to build and
evolve a software system.

• Modules for logical units of computation

• Minimize coupling, maximize cohesion.

• Draw it as a UML class or sequence diagram

• Key purpose: to communicate to others

• Interactions are part of the architecture

Design patterns

9

• Vocabulary of program development:

• A known solution to a known problem.

• Don’t reinvent the wheel!

• Many kinds of design patterns:

• Creational

• Structural

• Behavioral

• Concurrency

• …

Focus on modularity, abstraction, and specs

10

• No one person can understand all of a
realistic system.

• Modularity permits focusing on just one part.

• Abstraction enables ignoring detail.

• Specifications and documentation formally
describe behavior.

• Modularity, abstraction, and specifications help
to understand/fix errors

• Or to avoid them in the first place!

Process

11

• Needed to keep your project under control:

• Specification

• Schedule

• Source control

• Automated builds and test

• Bug database

• Bug fixes before features

• Hallway usability testing

Testing, static analysis, and symbolic execution

12

• Increase software quality.

• Testing techniques
• Unit and system testing

• Black and white box testing

• Integration and performance testing

• Static analysis
• Soundness vs Completeness

• Abstract values

• Transfer functions

• Symbolic execution

• Symbolic values

• Path conditions

• Tools

Code reviews and refactoring

13

• Code reviews improve code quality,
teamwork, knowledge, and skills.

• Code reviews can also help identify
opportunities for refactoring.

• Refactoring improves software's design

• to make it more extensible, flexible,
understandable, performant, …

• but every improvement has costs (and risks)

futurebeyond CSE 403

What you have learned and will learn

15

• Compare your skills today to the beginning of the term

• Bottom line: Your project would be easy for you

• Your next project can be much more ambitious

• You will continue to learn

• Building interesting systems is never easy, like anything
worth doing.

• Practice is a good teacher

• Requires thoughtful introspection

• Don’t learn only by trial and error!

Tell us what you think!

16

• Please complete the course evaluation form

• Useful to future students

• Useful to course staff

• Useful to the department

https://uw.iasystem.org/survey/167497

Build amazing things!

17

• Building systems is fun!

• It’s even more fun when you build them
successfully.

• Pay attention to what matters

• Use techniques and tools of CSE 403 effectively.

• Above all, use good taste and engineering
judgement.

