
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Fall 2016
courses.cs.washington.edu/courses/cse403/16au/

Code Reviews

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16au/

Outline

2

• What is code review?

• Kinds of code review

• Example

Outline

2

• What is code review?

• Kinds of code review

• Example

We will ask you to perform a code
review of your Release Candidate.

introcode reviews: what and why

Assuring software quality is hard …

4

• What are we assuring?

• Building the right system

• Building the system right

• correct, secure, reliable, available

• usable, cost effective, maintainable

• Why are we assuring it?

• Business, legal, ethical, social reasons

• How do we assure it?

Challenges of building large systems

5

• How to ensure maintainable, DRY,
readable, bug-free code?

• Average defect detection rate for
various testing approaches

• Unit testing: 25%

• Function testing: 35%

• Integration testing: 45%

• How can we do better?

Code reviews

6

• Code review: A constructive review of a
fellow developer’s code. A required sign-off
from another team member before a
developer is permitted to check in changes
or new code.

• Analogy: when writing articles for a
newspaper, what is the effectiveness of …

• spell-check/grammar check?

• author editing own article?

• others editing others’ articles?

Code reviews: mechanics

7

• Who: original developer and reviewer, sometimes
together in person, sometimes offline.

• What: reviewer gives suggestions for
improvement on a logical and/or structural level,
to conform to a common set of quality standards.

• Feedback leads to refactoring.

• Reviewer eventually approves code.

• When: code author has finished a coherent
system change that is otherwise ready for checkin

• Change shouldn't be too large or too small.

• Before committing the code to the repository or
incorporating it into the new build.

Code reviews: why do them?

8

• Improved code quality

• Prospect of someone reviewing your code raises
quality threshold.

• Forces code authors to articulate their decisions.

• Hands-on learning experience from peers

• Direct feedback leads to better algorithms, tests,
design patterns.

• Better understanding of complex code bases

• Reviewing others’ code enhances overall
understanding of the system, reduces redundancy.

Code reviews: studies

9

• Average defect detection rates

• Unit testing: 25%

• Function testing: 35%

• Integration testing: 45%

• Design and code inspections: 55% and 60%.

• 11 programs developed by the same group of people

• First 5 without reviews: average 4.5 errors per 100 lines of code

• Next 6 with reviews: average 0.82 errors per 100 lines of code

• Errors reduced by > 80 percent.

Code reviews: who does them?

10

• Everyone: a common industry practice.

• Made easier by advanced tools that

• integrate with version control

• highlight changes (i.e., diff function)

• e.g., github pull requests

kindskinds of code reviews

Common types of code review

12

• Tool-assisted reviews

• Formal inspections

• Walkthroughs

• Pair programming

Tool-assisted code reviews

13

Tool-assisted code reviews

13

• Most common form of code review

• Authors and reviewers use software tools
designed for peer code review.

• The tool gathers files, displays diffs and
comments, enforces reviews.

Tool-assisted code reviews

13

• Most common form of code review

• Authors and reviewers use software tools
designed for peer code review.

• The tool gathers files, displays diffs and
comments, enforces reviews.

• Advantages

• Lightweight, integrated into the workflow.

Tool-assisted code reviews

13

• Most common form of code review

• Authors and reviewers use software tools
designed for peer code review.

• The tool gathers files, displays diffs and
comments, enforces reviews.

• Advantages

• Lightweight, integrated into the workflow.

• Disadvantages

• Hard to ensure review quality and promptness.

Tool-assisted code reviews

14

Formal inspections

15

Formal inspections

15

• A more formalized code review with

• roles (moderator, author, reviewer, scribe, etc.)

• several reviewers looking at the same piece of code

• a specific checklist of kinds of flaws to look for

• flaws that have been seen previously

• high-risk areas such as security

Formal inspections

15

• A more formalized code review with

• roles (moderator, author, reviewer, scribe, etc.)

• several reviewers looking at the same piece of code

• a specific checklist of kinds of flaws to look for

• flaws that have been seen previously

• high-risk areas such as security

• Advantages

• High review quality with specific expected outcomes
(e.g. report, list of defects)

Formal inspections

15

• A more formalized code review with

• roles (moderator, author, reviewer, scribe, etc.)

• several reviewers looking at the same piece of code

• a specific checklist of kinds of flaws to look for

• flaws that have been seen previously

• high-risk areas such as security

• Advantages

• High review quality with specific expected outcomes
(e.g. report, list of defects)

• Disadvantages

• Heavyweight, time-consuming, expensive

Walkthroughs

16

Walkthroughs

16

• An informal discussion of code between author
and a single reviewer.

• The author walks the reviewer through a set of code
changes.

Walkthroughs

16

• An informal discussion of code between author
and a single reviewer.

• The author walks the reviewer through a set of code
changes.

• Advantages

• Simplicity in execution: anyone can do it, any time.

• In-person interaction, learning, and sharing.

Walkthroughs

16

• An informal discussion of code between author
and a single reviewer.

• The author walks the reviewer through a set of code
changes.

• Advantages

• Simplicity in execution: anyone can do it, any time.

• In-person interaction, learning, and sharing.

• Disadvantages

• Not an enforceable process, no record of the review.

• Easy for the author to unintentionally miss a change.

• Reviewers rarely verify that defects were fixed.

Pair programming

17

Pair programming

17

• Two developers writing code at a single
workstation with

• only one typing

• continuous free-form discussion and review

Pair programming

17

• Two developers writing code at a single
workstation with

• only one typing

• continuous free-form discussion and review

• Advantages

• Deep reviews, instant and continuous feedback.

• Learning, sharing, team-building.

Pair programming

17

• Two developers writing code at a single
workstation with

• only one typing

• continuous free-form discussion and review

• Advantages

• Deep reviews, instant and continuous feedback.

• Learning, sharing, team-building.

• Disadvantages

• Some developers don’t like it.

• No record of the review process.

• Time consuming.

reviewa code review example

What changes, if any, would you suggest?

19

public class Account {
 double principal,rate; int daysActive,accountType;
 public static final int STANDARD = 0, BUDGET=1,
 PREMIUM=2, PREMIUM_PLUS = 3;
 }

 public static double calculateFee(Account[] accounts)
 {
 double totalFee = 0.0;
 Account account;
 for (int i=0;i<accounts.length;i++) {
 account=accounts[i];
 if (account.accountType == Account.PREMIUM ||
 account.accountType == Account.PREMIUM_PLUS)
 totalFee += .0125 * (// 1.25% broker's fee
 account.principal * Math.pow(account.rate,
 (account.daysActive/365.25))
 - account.principal); // interest-principal
 }
 return totalFee;
 }
}

Possible changes

20

• Comment.

• Make fields private.

• Replace magic values (e.g. 365.25) with constants.

• Use an enum for account types.

• Use consistent whitespace, line breaks, etc.

Improved code (1/2)

21

/** An individual account. Also see CorporateAccount. */
public class Account {
 /** The varieties of account our bank offers. */

 public enum Type {STANDARD, BUDGET, PREMIUM, PREMIUM_PLUS}

 /** The portion of the interest that goes to the broker. */
 public static final double BROKER_FEE_PERCENT = 0.0125;

 private Type type;
 private double principal;

 /** The yearly, compounded rate (at 365.25 days per year). */
 private double rate;

 /** Days since last interest payout. */
 private int daysActive;

…

Improved code (2/2)

22

 /** Compute interest on this account. */
 public double interest() {
 double years = daysActive / 365.25;
 double compoundInterest = principal * Math.pow(rate, years);
 return compoundInterest – principal;

}

 /** Return true if this is a premium account. */
 public boolean isPremium() {
 return accountType == Type.PREMIUM ||
 accountType == Type.PREMIUM_PLUS;
 }

 /** Return the sum of broker fees for all given accounts. */
 public static double calculateFee(Account[] accounts) {
 double totalFee = 0.0;
 for (Account account : accounts) {
 if (account.isPremium()) {
 totalFee += BROKER_FEE_PERCENT * account.interest();
 }
 }
 return totalFee;
 }
}

Summary

23

• Code reviews improve

• code quality

• teamwork

• knowledge and skills

• Kinds of code review

• tool-assisted

• formal inspections

• walkthroughs

• pair programming

