CSE 403: Software Engineering, Fall 2016

courses.cs.washington.edu/courses/cse403/1 6au/

Code Reviews

Emina Torlak
emina@cs.washington.edu

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16au/

Outline

* What is code review!
* Kinds of code review

* Example

7,
THIS CODE REVIEW

memegeRerator.net

Outline

* What is code review!?
* Kinds of code review

* Example

review of your Release Candidate.

code reviews: what and why

Assuring software quality is hard ...

: X5
* What are we assuring? & g qure®e"
sex Sé\ ‘“ soitw ies
g . W“om"’pusm %SEX.‘B sses
* Building the right system o el wq;“ewgrff,c tlor?sa

accomp ished
* Building the system right

e correct, secure, reliable, available

e usable, cost effective, maintainable

* Why are we assuring it?

* Business, legal, ethical, social reasons u Ode
OFing Wou
. "Vg’v’ms:’t:gdip Ocesscomo
* How do we assure it! &, aconfiguration gy 'T

s VEer
‘9’0 lflc gborgnceser";l%m’? Ments

S mana ement

%.» certi lcatlonpvod“c

Challenges of building large systems

e How to ensure maintainable, DRY,

readable, bug-free code!

* Average defect detection rate for

various testing approaches

* Unit testing: 25%
* Function testing: 35%
* Integration testing: 45%

* How can we do better?

\?«o “\e‘\\f'

o
ac?oﬁg')‘(" ws%c‘e“ “3' gSSEX I8 ses

configur «s“O“f qo* ceverific tlons
5 x*‘ accomplished

deve\opmen m,.f neering

¢e““\ a%"' d -§

testing
-
® 8 4 ’change®; s
33 fmmaneTe f
%é'o,p S certificafi c?o 3
?ﬂccosn urce S OE
5 azrg,;qua -1
w m
.g w
u ﬁode
re °"’“’mod on
“‘;ﬂ v'?»‘}”emodesp 3éessc°"forTance
S, osmmconfngurahon S esling

. Veri
‘9’0 ﬂc st Lorgncesenti ? ”'enl‘s

S mana ement
uC

%.»certi lcatlonpv0°

Code reviews

e Code review: A constructive review of a
fellow developer’s code. A required sign-off
from another team member before a

developer is permitted to check in changes
or new code.

* Analogy: when writing articles for a
newspaper, what is the effectiveness of ...

 spell-check/grammar check?
* author editing own article?

* others editing others’ articles?

Code reviews: mechanics

* Who: original developer and reviewer, sometimes
together in person, sometimes offline.

* What: reviewer gives suggestions for
improvement on a logical and/or structural level,
to conform to a common set of quality standards.

* Feedback leads to refactoring.

* Reviewer eventually approves code.

* When: code author has finished a coherent
system change that is otherwise ready for checkin

* Change shouldn't be too large or too small.

* Before committing the code to the repository or
incorporating it into the new build.

Code reviews: why do them!?

* Improved code quality

* Prospect of someone reviewing your code raises
quality threshold.

* Forces code authors to articulate their decisions.

* Hands-on learning experience from peers

* Direct feedback leads to better algorithms, tests,
design patterns.

* Better understanding of complex code bases

* Reviewing others’ code enhances overall
understanding of the system, reduces redundancy.

Code reviews: studies

* Average defect detection rates

* Unit testing: 25%
* Function testing: 35%
* Integration testing: 45%

* Design and code inspections: 55% and 60%.

* || programs developed by the same group of people

* First 5 without reviews: average 4.5 errors per 100 lines of code
* Next 6 with reviews: average 0.82 errors per 100 lines of code

* Errors reduced by > 80 percent.

Code reviews: who does them?

* Everyone: a common industry practice.

* Made easier by advanced tools that

* integrate with version control
* highlight changes (i.e., diff function)
* e.g.,github pull requests

kinds of code reviews

Common types of code review

* Tool-assisted reviews
* Formal inspections

* Walkthroughs

* Pair programming

Tool-assisted code reviews

Tool-assisted code reviews

* Most common form of code review
e Authors and reviewers use software tools
designed for peer code review.

* The tool gathers files, displays diffs and
comments, enforces reviews.

Tool-assisted code reviews

* Most common form of code review

 Authors and reviewers use software tools
designed for peer code review.

* The tool gathers files, displays diffs and
comments, enforces reviews.

* Advantages

* Lightweight, integrated into the workflow.

Tool-assisted code reviews

* Most common form of code review

 Authors and reviewers use software tools
designed for peer code review.

* The tool gathers files, displays diffs and
comments, enforces reviews.

* Advantages
* Lightweight, integrated into the workflow.
* Disadvantages

* Hard to ensure review quality and promptness.

Tool-assisted code reviews

NO NEED To DOUBLE CHECK

THIS CHANGE LiST, iF Somg PRo-

BLEMS REMAIN THE REVIEWER

NO NEED To Look AT
THIS CHANGE LiST TOO c,wsuy)

1'\ SuRe THE AUTHoR
UNOWS WHAT HE'S DoiNG.

Formal inspections

Formal inspections

* A more formalized code review with

* roles (moderator, author, reviewer, scribe, etc.)
 several reviewers looking at the same piece of code
 a specific checklist of kinds of flaws to look for

* flaws that have been seen previously

* high-risk areas such as security

Formal inspections

* A more formalized code review with

* roles (moderator, author, reviewer, scribe, etc.)
 several reviewers looking at the same piece of code
 a specific checklist of kinds of flaws to look for

* flaws that have been seen previously

* high-risk areas such as security

* Advantages

* High review quality with specific expected outcomes
(e.g. report, list of defects)

Formal inspections

* A more formalized code review with

* roles (moderator, author, reviewer, scribe, etc.)
 several reviewers looking at the same piece of code
 a specific checklist of kinds of flaws to look for

* flaws that have been seen previously

* high-risk areas such as security

* Advantages

* High review quality with specific expected outcomes
(e.g. report, list of defects)
* Disadvantages

* Heavyweight, time-consuming, expensive

Walkthroughs

THAT LINE OF CODE
GIVES ME GAS

I
|

R

:
-
=

,
-

Walkthroughs

 An informal discussion of code between author
and a single reviewer.

* The author walks the reviewer through a set of code
changes.

THAT LINE OF CODE
GIVES ME GAS

Walkthroughs

 An informal discussion of code between author
and a single reviewer.

* The author walks the reviewer through a set of code
changes.

* Advantages

« Simplicity in execution: anyone can do it, any time.

* In-person interaction, learning, and sharing.

THAT LINE OF CODE
GIVES ME GAS

Walkthroughs

 An informal discussion of code between author
and a single reviewer.

* The author walks the reviewer through a set of code
changes.

* Advantages

« Simplicity in execution: anyone can do it, any time.

* In-person interaction, learning, and sharing.

* Disadvantages

* Not an enforceable process, no record of the review.
* Easy for the author to unintentionally miss a change.

* Reviewers rarely verify that defects were fixed.

THAT LINE OF CODE
GIVES ME GAS

Pair programming

Pair programming

* Two developers writing code at a single
workstation with

* only one typing

e continuous free-form discussion and review

Pair programming

* Two developers writing code at a single
workstation with

* only one typing

e continuous free-form discussion and review

* Advantages

* Deep reviews, instant and continuous feedback.

* Learning, sharing, team-building.

Pair programming

* Two developers writing code at a single
workstation with

* only one typing

e continuous free-form discussion and review

* Advantages

* Deep reviews, instant and continuous feedback.

* Learning, sharing, team-building.
* Disadvantages

* Some developers don't like it.

* No record of the review process.

* Time consuming.

a code review example

What changes, if any, would you suggest?

public class Account {
double principal,rate; int daysActive,accountType;
public static final int STANDARD = 0, BUDGET=1,
PREMIUM=2, PREMIUM_PLUS = 3;

s
public static double calculateFee(Account[] accounts)
{
double totalFee = 0.0;
Account account;
for (int i=0;i<accounts.length;i++) {
account=accounts[i];
if (account.accountType == Account.PREMIUM | |
account.accountType == Account.PREMIUM_PLUS)
totalFee += .0125 x (// 1.25% broker's fee
account.principal * Math.pow(account.rate,
(account.daysActive/365.25))
— account.principal); // interest-principal
s
return totalFee;
I3

Possible changes

 Comment.

* Make fields private.

* Replace magic values (e.g. 365.25) with constants.
* Use an enum for account types.

* Use consistent whitespace, line breaks, etc.

20

Improved code (1/2)

/**x An 1ndividual account. Also see CorporateAccount. x/
public class Account |

/*x The varieties of account our bank offers. x/

public enum Type {STANDARD, BUDGET, PREMIUM, PREMIUM_PLUS}

/**x The portion of the interest that goes to the broker. x/
public static final double BROKER_FEE_PERCENT = 0.0125;

private Type type;
private double principal;

/*x The yearly, compounded rate (at 365.25 days per year). x/
private double rate;

/*x Days since last interest payout. */
private int daysActive;

21

Improved code (2/2)

/**x Compute interest on this account. */
public double interest() {
double years = daysActive / 365.25;
double compoundInterest = principal *x Math.pow(rate, years);
return compoundInterest — principal;

}

/**x Return true if this is a premium account. */
public boolean isPremium() {
return accountType == Type.PREMIUM ||
accountType == Type.PREMIUM_PLUS;
}

/**x Return the sum of broker fees for all given accounts. */
public static double calculateFee(Account[] accounts) A
double totalFee = 0.0;
for (Account account : accounts) {
if (account.isPremium()) {
totalFee += BROKER_FEE_PERCENT x account.interest();
I3

}

return totalFee;

sSummary

* Code reviews improve

* code quality
* teamwork

* knowledge and skills

e Kinds of code review

* tool-assisted
* formal inspections
* walkthroughs

* pair programming

7,
THIS CODE REVIEW

memegeRerator.net

