
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Fall 2016
courses.cs.washington.edu/courses/cse403/16au/

Introduction

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/16au/

outlineStaff, About, Format, Advice, Goals

2

Course staff: cse403-staff@cs.washington.edu

3

Emina Torlak

(emina)

Yue Zhang

(yjzhang)

Spencer Pearson

(suspense)

mailto:cse403-staff@cs.washington.edu

focusThis course is about engineering software.

4

What is software engineering?

5

software engineering ≠ programming

Software engineering, broadly defined:
creating and maintaining software
applications by applying technologies
and practices from computer science,
project management, and other fields.

Software engineering is about people
working in teams under constraints to
create value for their customers.

What is software engineering?

6

“The first step toward the management
of disease was replacement of demon
theories and humours theories by the
germ theory. That very step, the
beginning of hope, in itself dashed all
hopes of magical solutions. It told
workers that progress would be made
stepwise, at great effort, and that a
persistent, unremitting care would have
to be paid to a discipline of cleanliness.
So it is with software engineering
today.”

Fred Brooks

Aspects of software engineering

7

1. Processes, methods, and techniques necessary
to turn a concept into a robust deliverable that
can evolve over time

2. Working with limited time and resources

3. Satisfying a customer

4. Managing risk

5. Teamwork and communication

Ties to many fields

8

• computer science (algorithms, data structures, languages, tools)
• business/management (project mgmt, scheduling)
• economics/marketing (selling, niche markets, monopolies)
• communication (managing relations with stakeholders: customers,

management, developers, testers, sales)
• law (patents, licenses, copyrights, reverse engineering)
• sociology (modern trends in societies, localization, ethics)
• political science (negotiations; topics at the intersection of law,

economics, and global societal trends; public safety)
• psychology (personalities, styles, usability, what is fun)
• art (GUI design, what is appealing to users)

Ties to many fields

8

• computer science (algorithms, data structures, languages, tools)
• business/management (project mgmt, scheduling)
• economics/marketing (selling, niche markets, monopolies)
• communication (managing relations with stakeholders: customers,

management, developers, testers, sales)
• law (patents, licenses, copyrights, reverse engineering)
• sociology (modern trends in societies, localization, ethics)
• political science (negotiations; topics at the intersection of law,

economics, and global societal trends; public safety)
• psychology (personalities, styles, usability, what is fun)
• art (GUI design, what is appealing to users)

Ties to many fields

8

• computer science (algorithms, data structures, languages, tools)
• business/management (project mgmt, scheduling)
• economics/marketing (selling, niche markets, monopolies)
• communication (managing relations with stakeholders: customers,

management, developers, testers, sales)
• law (patents, licenses, copyrights, reverse engineering)
• sociology (modern trends in societies, localization, ethics)
• political science (negotiations; topics at the intersection of law,

economics, and global societal trends; public safety)
• psychology (personalities, styles, usability, what is fun)
• art (GUI design, what is appealing to users)

Necessarily “softer” than other parts of CS;
fewer clearly right/wrong answers

• customer / client: wants software built

• often doesn't know what he/she wants

• managers: make plans, coordinate team

• hard to foresee all problems in advance

• developers: design and write code

• hard to write complex code for large systems

• testers: perform quality assurance (QA)

• impossible to test every combination of actions

• users: purchase and use software product

• can be fickle and can misunderstand the product

Roles of people in software

9

• customer / client: wants software built

• often doesn't know what he/she wants

• managers: make plans, coordinate team

• hard to foresee all problems in advance

• developers: design and write code

• hard to write complex code for large systems

• testers: perform quality assurance (QA)

• impossible to test every combination of actions

• users: purchase and use software product

• can be fickle and can misunderstand the product

Roles of people in software

9

formatCourse format

10

• Class sessions to discuss best practices (MWF)

• Reading assignments to reinforce the concepts

• Group project: to give you hands-on experience with the material

• Technical challenges given the larger project

• Social challenges given the team effort

• Frequent meetings:

• With your TA (mandatory, every Thursday during section)

• With your teammates (at minimum, every Tuesday)

A typical 403 week

11

What is a software project?

12

“Good, fast, cheap … choose two”

Projects are a balance of
three dimensions, with the
goal of producing a successful
deliverable.

Features & Quality

Time Resources

 SOFTWARE
DELIVERABLE

The project

13

• You make product proposals

• And then vote on which products to “fund”

• You’re divided into project teams of 6-8 students

• Larger teams, larger projects

• You develop your deliverable in stages

• Reflects modern methodologies for effective development

• A TA will act as your mentor and customer

• A project is successful only if it satisfies its customer

Project development stages

14

• Proposal

• Requirements

• Design

• Implementation

• Testing, validation, verification

• Documentation

• Customer exposure

• Final deliverable

Choose your own tools and
frameworks!

We’ll hit the ground running …

15

• Your chance to turn a great idea into a product!

• Prepare a 3-slide, 3-minute product pitch in teams of 2

• Vision and novelty

• Architecture

• Challenges and risks

• Schedule for this week and next week:

• Pair up by Thu (tomorrow) at noon

• Propose by Fri at 11pm

• Pitch your idea on Mon (lecture) and Tue (section)

• Vote by Tue at 11pm (rank your choices, self-select teams)

Project culture

16

• This is a real project

• We expect you to work to build a real system

• To be used by real people

• This is real engineering

• Take initiative

• Find and solve problems yourselves

• Coding is only part of the job

• Good planning and design, hitting your market,
and working well with your team, are all
needed for success

Grading and academic integrity

17

• Grading

• Project: 70%

• Reading assignments: 20%

• Class participation: 10%

• Academic integrity

• Simple: do not cheat!

• Do individual work by yourself.

• Do group work with your teammates only.

adviceLessons from past students

18

Communication is key

19

• Foundation of the success of our team was
communication

• Team communication and cooperation are
all-important

• Working together (physically) was good

• Well-run and consistently scheduled
meetings help a project a lot

Scheduling

20

• We often underestimated tasks. If we had
spent more time analyzing each task and
breaking it down into more manageable
chunks our estimated completion times
would have been more accurate.

• Get things done early; don’t cram at the end

• Remember you can cut features (triple
constraint)

• Don’t underestimate the difficulty of learning
new programming languages, frameworks,
and tools

Features & Quality

Time Resources

 SOFTWARE
DELIVERABLE

Testing and coordination

21

• Thoroughly testing your code and ensuring
that your code passes all current tests before
submitting is very helpful

• We needed a better upfront testing design

• We learned (through some pain) to ensure
to do small, frequent updates and commits.
Failing to do this results in merges that can
be a nightmare.

goalsThis sounds like a lot of work!
Why take this course?

22

What’s in it for you?

23

• See how software is produced, from idea to ship to maintenance

• Get exposure to software development practices in use today

• Get experience collaborating in a team toward a common goal

• Be able to articulate and understand technical ideas

Unique aspects of CSE 403

24

• Cross-disciplinary nature of the subject

• Larger teams

• Propose and work on your own ideas

• Course staff in the "coach" role

• Mistakes along the way are encouraged, not penalized

• Few clearly right/wrong answers

• Plans always change

• Content: software design, testing, project management, etc.

Isn’t this just like an internship?

25

• It’s not in that internships are

• Focused on one role in the team (often dev. or test)

• Requirements, arch, high-level design may be set

• Less opportunity for reflection

• Less generalization (such as from reading papers)

• Mentor may be more focused on results than process and
developing you as an engineer

• Internships are complementary to CSE 403

• People who have had internships learn different things in CSE
403, but no less

CSE403courses.cs.washington.edu/courses/cse403/16au/

26

http://courses.cs.washington.edu/courses/cse403/16au/

