
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Spring 2015
courses.cs.washington.edu/courses/cse403/15sp/

Software Architecture

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/15sp/

Outline

2

• What is a software architecture?

• What does an architecture look like?

• What is a good architecture?

• Properties of architectures

• Example architectures

basicssoftware architecture: motivation & definition

Why software architecture?

4

“There are two ways of constructing a
software design: one way is to make it so
simple that there are obviously no
deficiencies; the other is to make it so
complicated that there are no obvious
deficiencies.”

C.A.R. Hoare (1985)

The basic problem: from requirements to code

5

 Requirements

 Code

??

How to bridge the gap
between requirements
and code?

The basic problem: solve with inspiration

6

 Requirements

 Code

a miracle happens

The basic problem: solve with engineering

7

 Requirements

 Code

Software Architecture

Provides a high-level
framework to  
build and evolve a
software system.

depictwhat does an architecture look like?

Box and arrow diagrams

9

Very common and hugely
valuable.

But what does a box
represent? An arrow? A
layer? Adjacent boxes?

An architecture: components and connectors

10

• Components define the basic computations
comprising the system and their behaviors

• abstract data types, filters, etc.

• Connectors define the interconnections between
components

• procedure call, event announcement,  
asynchronous message sends, etc.

• The line between them may be fuzzy at times
• A connector might (de)serialize data, but can it perform

other, richer computations?

• UML = unified modeling language

• A standardized way to describe (draw)
architecture

• Also implementation details such
as subclassing, uses (dependences),
and much more

• Widely used in industry

• Topic of next lecture

A standard notation for architecture: UML

11

judgewhat is a good architecture?

A good architecture …

13

• Satisfies functional and performance
requirements

• Manages complexity

• Accommodates future change

• Is concerned with
• reliability, safety, understandability,

compatibility, robustness

A good architecture …

13

• Satisfies functional and performance
requirements

• Manages complexity

• Accommodates future change

• Is concerned with
• reliability, safety, understandability,

compatibility, robustness

Leads to modularity and
separation of concerns.

A modular architecture helps with …

14

• System understanding: interactions between modules

• Reuse: high-level view shows opportunity for reuse

• Construction: breaks development down into work items

• Evolution: high-level view shows evolution path

• Management: helps understand work items and track progress

• Communication: provides vocabulary; a picture says 1000 words

You know your software is modular when it is …

15

You know your software is modular when it is …

15

• Decomposable
• can be broken down into pieces

You know your software is modular when it is …

15

• Decomposable
• can be broken down into pieces

• Composable
• pieces are useful and can be combined

You know your software is modular when it is …

15

• Decomposable
• can be broken down into pieces

• Composable
• pieces are useful and can be combined

• Understandable
• one piece can be examined in isolation

You know your software is modular when it is …

15

• Decomposable
• can be broken down into pieces

• Composable
• pieces are useful and can be combined

• Understandable
• one piece can be examined in isolation

• Adaptable
• change in requirements affects few modules

You know your software is modular when it is …

15

• Decomposable
• can be broken down into pieces

• Composable
• pieces are useful and can be combined

• Understandable
• one piece can be examined in isolation

• Adaptable
• change in requirements affects few modules

• Safe
• an error affects few other modules

Achieving modularity: think about interfaces

16

• Public interface: data and behavior of
the object that can be seen and
executed externally by "client" code.

• Private implementation: internal
data and methods in the object, used
to help implement the public interface,
but cannot be directly accessed.

• Client: code that uses your module.

Achieving modularity: think about interfaces

16

• Public interface: data and behavior of
the object that can be seen and
executed externally by "client" code.

• Private implementation: internal
data and methods in the object, used
to help implement the public interface,
but cannot be directly accessed.

• Client: code that uses your module.

Achieving modularity: think about interfaces

16

• Public interface: data and behavior of
the object that can be seen and
executed externally by "client" code.

• Private implementation: internal
data and methods in the object, used
to help implement the public interface,
but cannot be directly accessed.

• Client: code that uses your module. Public interface is the speaker,
volume buttons, station dial.

Private implementation is the guts
of the radio (transistors, capacitors,
voltage readings, etc.) that user
should not see.

knowproperties of architectures

Key properties of an architecture

18

• Coupling

• Cohesion

• Style conformity

• Matching

Loose coupling

19

• Coupling: the kind and quantity of interconnections
among modules

• Modules that are loosely coupled (or uncoupled) are
better than those that are tightly coupled

• The more tightly coupled two modules are, the harder it
is to work with them separately

Tightly or loosely coupled?

20

User Interface Graphics

Data Storage
Application Level Classes

Business Rules Enterprise Level Tools

-End1

*

-End2

*-End3

*

-End4*

-End5

*

-End6

*

-End7*

-End8*

-End9*

-End10

*

-End11*

-End12*

-End13

*

-End14*

-End15

*

-End16

*

-End17

*

-End18

*

-End19*

-End20*

-End21

*

-End22

*

-End23*
-End24*

-End25*
-End26*

Tightly or loosely coupled?

21

User Interface Graphics

Data Storage Application Level Classes

Business Rules Enterprise Level Tools

-End1

*

-End2

*

-End3*

-End4

*

-End5*

-End6*

-End9

*

-End10

*

-End11

*

-End12

*

-End13*

-End14*

-End15*

-End16*

-End7*

-End8 *

Strong cohesion

22

• Cohesion: how closely the operations in a module are related

• Tight relationships improve clarity and understanding

• Classes with good abstraction usually have strong cohesion

• No schizophrenic classes!

Strong or weak cohesion?

23

class Employee {

 public:

 FullName GetName() const;
 Address GetAddress() const;
 PhoneNumber GetWorkPhone() const;

 bool IsJobClassificationValid(JobClassification jobClass);
 bool IsZipCodeValid (Address address);
 bool IsPhoneNumberValid (PhoneNumber phoneNumber);

 SqlQuery GetQueryToCreateNewEmployee() const;
 SqlQuery GetQueryToModifyEmployee() const;
 SqlQuery GetQueryToRetrieveEmployee() const;

 …
}

Style conformity: what is a style?

24

• An architectural style defines
• The vocabulary of components and connectors for a family

of architectures

• Constraints on the elements and their combination

• Topological constraints (no cycles, etc.)

• Execution constraints (timing, etc.)

• By choosing a style, one gets all the known properties of
that style (for any architecture in that style)

• For example: performance, lack of deadlock, ease of making
particular classes of changes, etc.

Style conformity: more than boxes and arrows

25

• Consider pipes & filters (Garlan and Shaw)
• Pipes must compute local transformations

• Filters must not share state with other filters

• There must be no cycles

• If these constraints are violated, it’s not a pipe & filter system
• One can’t tell generally this from a picture

• One can formalize these constraints

Style conformity: more than boxes and arrows

25

• Consider pipes & filters (Garlan and Shaw)
• Pipes must compute local transformations

• Filters must not share state with other filters

• There must be no cycles

• If these constraints are violated, it’s not a pipe & filter system
• One can’t tell generally this from a picture

• One can formalize these constraints

scan parse optimize generate

Component matching

26

• Components in an architecture match
if they make compatible assumptions
about their operating environment
(Garlan, Allen, Ockerbloom).

• Mismatches lead to
• Excessive code size

• Poor performance

• Error-prone construction

• Having to modify off-the-shelf
components

 July/August 2009 I E E E S O F T W A R E 67

two things would be necessary. First, design-
ers must change how they build components
intended to be part of a larger system. Second,
the software community must provide new no-
tations, mechanisms, and tools that let designers
accomplish this.

The World Has Changed
In the decade and a half since that publication, the
state of the practice in component-based reuse has
changed dramatically. The problems we identified
might seem behind us. Today’s software systems
routinely build on many layers of reusable infra-
structure (for example, for distributed communi-
cation and remote data access), interact with us-
ers through standard interfaces (for example, Web
browsers), and use large corpuses of open source
software (for example, Apache Tomcat). They
also have sophisticated development environments
that provide direct access to reuse libraries (for ex-
ample, Eclipse and NetBeans), and they exploit
services created in a global virtual operating en-
vironment. Indeed, for every line of code that de-
velopers write, they reuse thousands of lines writ-
ten by someone else.

But has the problem gone away, or has it simply
found a new home in a more modern setting?

The State of Architectural
Mismatch Today
Three basic techniques exist for dealing with ar-
chitectural mismatch. One is to prevent it. An-
other is to detect it when it does occur, hopefully
early in the development life cycle, when you can
easily consider alternatives. The third is to repair it
when it is unavoidable. Modern software develop-
ment methods have made advancements in each of
these techniques.

Preventing Architectural Mismatch
This technique has benefited from developments
in a number of areas, including architectural spe-

cialization, open source practices, and virtualiza-
tion and common user interfaces.

Architectural specialization. One way to help pre-
vent architectural mismatch is to work in an archi-
tecturally specialized design domain. Specializa-
tion restricts the range of permissible components
and the interactions between them, thereby elimi-
nating some of the variability that contributes to
mismatch.

Figure 2 illustrates common points in the spe-
cialization space. At the far left are completely un-
constrained architectures. (This would arguably
include the system we described in our original
article.) Moving to the right, architectures must
fit in a narrower design context—for example, ge-
neric styles, such as data flow and call-return.3,4
More specific still are specializations of those
styles, such as pipes and filters. Further to the
right are component integration standards, which
typically dictate the kinds of connectors you can
use, the kinds of interfaces that components must
have, and the global control structures. Next are
domain-specific integration standards, and to the
far right are product lines.

Assumptions about the
application domain

Assumptions
about components
at the same level

of abstraction

Assumptions
about infrastructure

Figure 2. The spectrum
of architectural
specialization.
The figure depicts
representative points
along a spectrum
that characterizes
the degrees of
specialization, or
domain specificity, of a
class of architectures.
Elements below the
axis are examples of
architectures in each
class.

Figure 1. Three facets of
component interaction.1
Each facet identifies a
set of assumptions that
a component may make
about its environment.

Interface mismatch

27

NASA lost a $125 million Mars
orbiter because one engineering
team used metric units while
another used English units for a
key spacecraft operation.

studyexample architectures

Client-server architecture

29

Client-server architecture

29

Separates the client
and the server.

Model, view, controller (MVC)

30

Model, view, controller (MVC)

30

Separates:

• the application object (model)

• the way it is represented to
the user (view)

• the way in which the user
controls it (controller)

Shared nothing (SN) architecture

31

Network

Proc 1

Memory

Proc 2

Memory

Proc N

Memory
…

Shared nothing (SN) architecture

31

Separates individual
components (nodes)
from each other.

Network

Proc 1

Memory

Proc 2

Memory

Proc N

Memory
…

Summary

32

• An architecture provides a high-
level framework to build and
evolve a software system.

• Strive for modularity: strong
cohesion and loose coupling.

• Consider using existing
architectural styles or patterns.

