CSE 403: Software Engineering, Spring 2015

courses.cs.washington.edu/courses/cse403/15sp/

Software Architecture

Emina Torlak
emina@cs.washington.edu

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/15sp/

Outline

W
W
W

hat is a software architecture!?

hat does an architecture look like?

nat is a good architecture?

* Properties of architectures

e Example architectures

~_ Mm‘ilﬂ.nllu .

© 2007, Robert A. Baron

N

-'ﬂ Im

pix@studiolo.org

software architecture: motivation & definition

Why software architecture?

“There are two ways of constructing a
software design: one way is to make it so
simple that there are obviously no
deficiencies; the other is to make it so
complicated that there are no obvious
deficiencies.”

C.A.R. Hoare (1985)

The basic problem: from requirements to code

Requirements

How to bridge the gap
between requirements

T
?7?
I and code!?
\ 4

The basic problem: solve with inspiration

T

a miracle happens

v.

The basic problem: solve with engineering

Requirements

4 Provides a high-level

I framework to
Software Architecture build and evolve a

I software system.

\4

what does an architecture look like?

Box and arrow diagrams

Very common and hugely

valuable.
But what does a box
Any Client Driver represent! An arrow?! A
Firefox Plugin layer! Adjacent boxes?

Torque Driver

Third-Party Listener > xP$T
Software, €.g., |&— Module Engine
Torque Engine,

Firefox, ~—_
elc. Presenter xPST File
—— Module (cog. model)
xPST Web
Authoring

Tool (WAT)

An architecture: components and connectors

* Components define the basic computations
comprising the system and their behaviors

* abstract data types, filters, etc.

e Connectors define the interconnections between
components

* procedure call, event announcement,
asynchronous message sends, etc.

* The line between them may be fuzzy at times

* A connector might (de)serialize data, but can it perform
other, richer computations!

A standard notation for architecture:

* UML = unified modeling language

* A standardized way to describe (draw)
architecture

* Also implementation details such
as subclassing, uses (dependences),
and much more

* Widely used in industry

* Topic of next lecture

UML

UNIFIED o
MODELING

LANGUAGE L

what is a good architecture?

A good architecture ...

* Satisfies functional and performance
requirements

* Manages complexity
* Accommodates future change

* |s concerned with

* reliability, safety, understandability,
compatibility, robustness

A good architecture ...

* Satisfies functional and performance
requirements

* Manages complexity
* Accommodates future change

* |s concerned with

* reliability, safety, understandability,
compatibility, robustness

Leads to modularity and
separation of concerns.

A modular architecture helps with ...

* System understanding: interactions between modules

* Reuse: high-level view shows opportunity for reuse

* Construction: breaks development down into work items

* Evolution: high-level view shows evolution path

* Management: helps understand work items and track progress

« Communication: provides vocabulary; a picture says 1000 words

You know your software is modular when it is ...

You know your software is modular when it is ...

* Decomposable

* can be broken down into pieces

You know your software is modular when it is ...

* Decomposable

* can be broken down into pieces

* Composable

* pieces are useful and can be combined

You know your software is

* Decomposable

* can be broken down into pieces

* Composable

* pieces are useful and can be combined

 Understandable

* one piece can be examined in isolation

modular when it is ...

You know your software is modular when it is ...

* Decomposable

* can be broken down into pieces

* Composable

* pieces are useful and can be combined

 Understandable

* one piece can be examined in isolation

* Adaptable

* change in requirements affects few modules

You know your software is modular when it is ...

* Decomposable

* can be broken down into pieces

* Composable

* pieces are useful and can be combined

 Understandable

* one piece can be examined in isolation

* Adaptable

* change in requirements affects few modules

e Safe

* an error affects few other modules

Achieving modularity: think about interfaces

* Public interface: data and behavior of
the object that can be seen and
executed externally by "client” code.

* Private implementation: internal
data and methods in the object, used
to help implement the public interface,
but cannot be directly accessed.

* Client: code that uses your module.

Achieving modularity: think about interfaces

* Public interface: data and behavior of
the object that can be seen and
executed externally by "client” code.

* Private implementation: internal
data and methods in the object, used
to help implement the public interface,
but cannot be directly accessed.

* Client: code that uses your module.

Achieving modularity: think about interfaces

* Public interface: data and behavior of
the object that can be seen and
executed externally by "client” code.

* Private implementation: internal
data and methods in the object, used
to help implement the public interface,
but cannot be directly accessed.

* Client: code that uses your module.

Public interface is the speaker,
volume buttons, station dial.

Private implementation is the guts
of the radio (transistors, capacitors,
voltage readings, etc.) that user
should not see.

properties of architectures

Key properties of an architecture

* Coupling
* Cohesion
* Style conformity

* Matching

Loose coupling

* Coupling: the kind and quantity of interconnections
among modules

* Modules that are loosely coupled (or uncoupled) are
better than those that are tightly coupled

* The more tightly coupled two modules are, the harder it
is to work with them separately

Tightly or loosely coupled?

Graphics

-End21

-End23
-End24

User Interface

-En#hd2
-Endo6

-End3 * *

-Eﬁa11 -End25
* | -End26
-End4
-End5

Application Level Classes

Data Storage |-

-End16

-End13
-End9 YT A —
-Endi2 _End14 s * o
-End10 BUSineSS Rules _End15 : N
o Enterprise Level Tools

-End22

20

Tightly or loosely coupled?

User Interface| =t

Graphics

-End5
* -End3

-End6

Data Storage| =« |Application Level Classes

-End15
-End7

-End16

-End13

-End14

Business Rules | <™" Enterprise Level Tools

-End8

-End4

21

Strong cohesion

* Cohesion: how closely the operations in a module are related
* Tight relationships improve clarity and understanding
* Classes with good abstraction usually have strong cohesion

* No schizophrenic classes!

22

Strong or weak cohesion?

class Employee {
public:

FullName GetName() const;:
Address GetAddress() const;
PhoneNumber GetWorkPhone() const;

bool IsJobClassificationValid(JobClassification jobClass);
bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);

SglQuery GetQueryToCreateNewEmployee() const;
SglQuery GetQueryToModifyEmployee() const;
SglQuery GetQueryToRetrieveEmployee() const;

23

Style conformity: what is a style?

* An architectural style defines

* The vocabulary of components and connectors for a family
of architectures

 Constraints on the elements and their combination
* Topological constraints (no cycles, etc.)

* Execution constraints (timing, etc.)

* By choosing a style, one gets all the known properties of
that style (for any architecture in that style)

* For example: performance, lack of deadlock, ease of making
particular classes of changes, etc.

24

Style conformity: more than boxes and arrows

* Consider pipes & filters (Garlan and Shaw)
* Pipes must compute local transformations
e Filters must not share state with other filters

* There must be no cycles

* If these constraints are violated, it’s not a pipe & filter system
* One can’t tell generally this from a picture

e One can formalize these constraints

25

Style conformity: more than boxes and arrows

* Consider pipes & filters (Garlan and Shaw)
* Pipes must compute local transformations
e Filters must not share state with other filters

* There must be no cycles

* If these constraints are violated, it’s not a pipe & filter system
* One can’t tell generally this from a picture

e One can formalize these constraints

scan > parse > optimize > generate

Component matching

* Components in an architecture match
if they make compatible assumptions

about their operating environment
(Garlan,Allen, Ockerbloom).

 Mismatches lead to
 Excessive code size
* Poor performance

* Error-prone construction

* Having to modify off-the-shelf
components

Assumptions about the
application domain

N

)

Assumptions
about components
at the same level
of abstraction

Assumptions
about infrastructure

26

Interface mismatch

NASA lost a $125 million Mars
orbiter because one engineering
team used metric units while
another used English units for a
key spacecraft operation.

27

example architectures

Client-server architecture

| Client |
| Client i
i 3 :
___ J
| Server v |
i — Web-Server and o |
A \‘ %] Business Logic ‘ : i
Static HTML- ‘¢ Dynamic HTML-
i pages Database «— sages i

Client-server architecture

Separates the client
and the server.

P— — — — — — — — — — —— — — — — — — — — — — — — — —— — — — — — — — — — — — — — —

i Client i
| Client i
s : :
___]
| Server | |
i N Web-Server and — |
: A ’ Business Logic ‘_’ :
| » :
| Static HTML- S
i pages Database <« e i
I I

Model, view, controller (MVC)

/ MODEL W

UPDATES MANIPULATES
| |
VIEW CONTROLLER
\
Y é”/
$ o"
N\ /

30

Model, view, controller (MVC)

/ MODEL W

UPDATES MANIPULATES
v |
VIEW CONTROLLER
\
Y <o°’/
$ S"

Separates:

°t

°t
t

°t

ne application object (model)

ne way it is represented to
ne user (view)

ne way in which the user

controls it (controller)

30

Shared nothing (SN) architecture

-

-

Network
Proc | Proc 2 Proc N
Memory Memory Memory

-

31

Shared nothing (SN) architecture

-

-

Network
Proc | Proc 2 Proc N
Memory Memory Memory

-

Separates individual
components (nodes)
from each other.

31

summary

* An architecture provides a high-
level framework to build and
evolve a software system.

* Strive for modularity: strong
cohesion and loose coupling.

* Consider using existing
architectural styles or patterns.

WA ;.,;,,.<,mnlr-.nx l:.., S

© 2007, Robert A. Baron

.

=TTy ltﬂ

|
“4"

pix@studiolo.org

32

