CSE 403: Software Engineering, Spring 2015

courses.cs.washington.edu/courses/cse403/15sp/

Version Control

Emina Torlak
emina@cs.washington.edu


mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/15sp/

Outline

* Version control systems
* Basic concepts behind Git
* Working with Git

* Creating or cloning a repository
* Staging and committing changes
* Pushing and pulling

* Branching and merging

* Hints for effective use of Git

These slides are based on
http://git-scm.com/book/en/


http://git-scm.com/book/en/

Version control systems

Local Computer

Checkout Version Database A system that records changes
to a file or set of files over

Version 3 time so that you can recall

| specific versions later.

Version 2

Version 1




Centralized version control systems

Computer A

€D

Central VCS Server

Computer B

&

Version Database

Version 3

Version 2

Version 1

\

A single server that
contains all the versioned
files, and clients that
check out files from that
central place.




Distributed version control systems

Server Computer

Version Database

Version 3
|
Version 2
|
Version 1

Computer A

<>

Version Database

Version 3
I
Version 2
|
Version 1

Computer B

<>

Version Database

Version 3
I
Version 2
I
Version 1

Clients fully mirror the
repository (instead of just
checking out the latest
snapshot of the files).

\



A brief history of Git

* Developed by Linus Torvalds for the Linux kernel in 2005

* Currently the most widely adopted version control system

e Goals

* Support for non-linear development
* Fully distributed

 Efficient handling of large projects (like Linux)

git




Version control with Git: snapshots

Stream of snapshots.

Checkins Over Time

Version 1 Version 2 Version 3 Version 4 Version 5

- oam mm oEm oEm oEm oEm o o oEm =



Version control with Git: states

Files are committed, modified, or staged.

\

.git directory
(Repository)

Working
Directory

Checkout the project

Stage Fixes




Version control with Git: workflow

|. Modify files in the working directory.
2. Stage the files, adding snapshots of them to the staging area.

3. Do a commit, which takes the files as they are in the staging
area and stores that snapshot permanently.

Working Staging
Directory Area
Checkout the project

.git directory
(Repository)




Working with Git: basic operations

- Setting up

» Creating or cloning a repository
- Staging and committing changes
* Pushing and pulling

* Branching and merging




Working with Git: first-time setup

$ git config --gl
$ git config --gl

$ git config --gl

o

pal user.name "John Doe"
pal user.email johndoe@example.com

hal core.editor emacs

Set your identity and
preferred editor.


mailto:johndoe@example.com

Working with Git: creating or cloning a repo

Start tracking a project in Git.

$ git init



Working with Git: creating or cloning a repo

Start tracking a project in Git.
$ git init

$ git clone https://github.com/emina/cse4@3

Clone an existing repository.



Working with Git: staging and committing

$ echo "My Project' > README —— Untracked

Untracked Unmodified

Add the file

Remove the file

Edit the file I

Stage the file




Working with Git: staging and committing

$ echo "My Project' > README
$ git add README ~ Staged

Untracked Unmodified Modified
Add the file
Edit the file I

Stage the file

Remove the file




Working with Git: staging and committing

$ echo "My Project' > README

¢ git add README

$ git commit -m “readme” —— Unmodified

Untracked Unmodified

Add the file

Remove the file

Edit the file I

Stage the file




Working with Git: pushing changes

Push your master branch to

$ git push origin master .
your origin server.



Working with Git: pushing changes

Push your master branch to

$ git push origin master .
your origin server.

If out of sync with the origin,
push will be rejected. Pull,
merge, and try again.



Working with Git: pulling changes

Pulls changes from the origin
server and merges them into
your working directory.

$ git pull



Working with Git: pulling changes

Pulls changes from the origin
server and merges them into
your working directory.

$ git pull

If there are conflicting changes,
merge manually, add, and
commit.



Working with Git: branching

Creates a branch and
switches to it.

$ git checkout -b iss53

master

Co B B C1 - C2




Working with Git: merging

Switch to the master branch,

$ git checkout master ..

Common
Ancestor Snapshot to

' Merge Into
Co - C1 <<————<:
Snapshot to
Merge In

C5 :)

==




Working with Git: merging

$ git checkout master
$ git merge iss53

Cco

C1

Switch to the master branch,
and merge changes from iss53

———— into the master.

C2 B C4 - C5

AN /

C3 e B C5

==




Hints for using Git: what not to commit

* Avoid binary files (especially simultaneous editing)
* Word .doc files

* Do not commit generated files
* Binaries (e.g., .class files), etc.
* Wastes space in repository

* Causes merge conflicts



Hints for using Git: commit often

* Make many small commits, not one big one

* Easier to understand, review, merge, revert

* How to make many small commits:
* Do only one task at a time and commit after each one
* Create a new clone for each simultaneous task

e Create a branch for each simultaneous task
e Somewhat more efficient
* Somewhat more complicated and error-prone

 Easier to share unfinished work with teammates

20



Hints for using Git: synchronize often

e Pull often

* Avoid getting behind the master or your teammates

* Push as often as practical
* Don’t destabilize the master build

* Automatic testing on each push is a good idea

21



Hints for using Git: avoid merge conflicts

* Modularize your work
* Divide work so that individuals or subteams “own” a module
* Other team members only need to understand its specification

* Requires good documentation and testing

 Communicate about changes that may conflict

* But don’t overwhelm the team in such messages

22



summary

* Version control systems record changes to a
file or set of files over time so that you can
recall specific versions later.

e Git is the recommended VCS for 403.

* Learn more at http://git-scm.com/book/en/

git

23


http://git-scm.com/book/en/

