
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Spring 2015
courses.cs.washington.edu/courses/cse403/15sp/

Version Control

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/15sp/

Outline

2

• Version control systems

• Basic concepts behind Git

• Working with Git
• Creating or cloning a repository

• Staging and committing changes

• Pushing and pulling

• Branching and merging

• Hints for effective use of Git

These slides are based on
http://git-scm.com/book/en/

http://git-scm.com/book/en/

Version control systems

3

A system that records changes
to a file or set of files over
time so that you can recall
specific versions later.

Centralized version control systems

4

A single server that
contains all the versioned
files, and clients that
check out files from that
central place.

Distributed version control systems

5

Clients fully mirror the
repository (instead of just
checking out the latest
snapshot of the files).

A brief history of Git

6

• Developed by Linus Torvalds for the Linux kernel in 2005

• Currently the most widely adopted version control system

• Goals
• Support for non-linear development

• Fully distributed

• Efficient handling of large projects (like Linux)

Version control with Git: snapshots

7

Stream of snapshots.

Version control with Git: states

8

Files are committed, modified, or staged.

Version control with Git: workflow

9

1. Modify files in the working directory.

2. Stage the files, adding snapshots of them to the staging area.

3. Do a commit, which takes the files as they are in the staging
area and stores that snapshot permanently.

• Setting up
• Creating or cloning a repository
• Staging and committing changes
• Pushing and pulling
• Branching and merging

Working with Git: basic operations

10

Working with Git: first-time setup

11

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com
$ git config --global core.editor emacs

Set your identity and
preferred editor.

mailto:johndoe@example.com

Working with Git: creating or cloning a repo

12

$ git init

Start tracking a project in Git.

Working with Git: creating or cloning a repo

12

$ git init

Start tracking a project in Git.

$ git clone https://github.com/emina/cse403

Clone an existing repository.

$ echo 'My Project' > README
$ git add README
$ git commit -m “readme”

Working with Git: staging and committing

13

Untracked

$ echo 'My Project' > README
$ git add README
$ git commit -m “readme”

Working with Git: staging and committing

13

Staged

$ echo 'My Project' > README
$ git add README
$ git commit -m “readme”

Working with Git: staging and committing

13

Unmodified

Working with Git: pushing changes

14

$ git push origin master Push your master branch to
your origin server.

Working with Git: pushing changes

14

$ git push origin master Push your master branch to
your origin server.

If out of sync with the origin,
push will be rejected. Pull,
merge, and try again.

Working with Git: pulling changes

15

$ git pull
Pulls changes from the origin
server and merges them into
your working directory.

Working with Git: pulling changes

15

$ git pull
Pulls changes from the origin
server and merges them into
your working directory.

If there are conflicting changes,
merge manually, add, and
commit.

Working with Git: branching

16

$ git checkout -b iss53

Creates a branch and
switches to it.

Switch to the master branch,
…

Working with Git: merging

17

$ git checkout master

Switch to the master branch,
and merge changes from iss53
into the master.

Working with Git: merging

18

$ git checkout master
$ git merge iss53

Hints for using Git: what not to commit

19

• Avoid binary files (especially simultaneous editing)
• Word .doc files

• Do not commit generated files
• Binaries (e.g., .class files), etc.

• Wastes space in repository

• Causes merge conflicts

Hints for using Git: commit often

20

• Make many small commits, not one big one
• Easier to understand, review, merge, revert

• How to make many small commits:
• Do only one task at a time and commit after each one

• Create a new clone for each simultaneous task

• Create a branch for each simultaneous task

• Somewhat more efficient

• Somewhat more complicated and error-prone

• Easier to share unfinished work with teammates

Hints for using Git: synchronize often

21

• Pull often
• Avoid getting behind the master or your teammates

• Push as often as practical
• Don’t destabilize the master build

• Automatic testing on each push is a good idea

Hints for using Git: avoid merge conflicts

22

• Modularize your work
• Divide work so that individuals or subteams “own” a module

• Other team members only need to understand its specification

• Requires good documentation and testing

• Communicate about changes that may conflict
• But don’t overwhelm the team in such messages

Summary

23

• Version control systems record changes to a
file or set of files over time so that you can
recall specific versions later.

• Git is the recommended VCS for 403.

• Learn more at http://git-scm.com/book/en/

http://git-scm.com/book/en/

