
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Spring 2015
courses.cs.washington.edu/courses/cse403/15sp/

Requirements

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/15sp/

Outline

2

• What are requirements?

• How do we gather or find out requirements?

• How do we document requirements?
• What to include?

• What to omit?

Software requirements

3

Requirements specify what to build:
• tell “what” and not “how”
• tell the problem, not the solution
• reflect system design, not software design

“what vs how”: it’s all relative

4

• Input file processing is the what, parsing is the how

• Parsing is the what, a stack is the how

• A stack is the what, an array or a linked list is the how

• A linked list is the what, a doubly linked list is the how

• A doubly linked list is the what, Node* is the how

“One person’s constant is another person’s variable.” [Perlis]

Why requirements? They help …

5

• Understand precisely what is required of the
software

• Communicate this understanding precisely to
all development parties

• Control production to ensure that system
meets specs (including changes)

6

Roles of requirements

7

Roles of requirements

7

• Customers
• show what should be delivered; contractual base

Roles of requirements

7

• Customers
• show what should be delivered; contractual base

• Managers
• a scheduling / progress indicator

Roles of requirements

7

• Customers
• show what should be delivered; contractual base

• Managers
• a scheduling / progress indicator

• Designers
• provide a spec to design

Roles of requirements

7

• Customers
• show what should be delivered; contractual base

• Managers
• a scheduling / progress indicator

• Designers
• provide a spec to design

• Programmers
• list a range of acceptable implementations / output

Roles of requirements

7

• Customers
• show what should be delivered; contractual base

• Managers
• a scheduling / progress indicator

• Designers
• provide a spec to design

• Programmers
• list a range of acceptable implementations / output

• QA / testers
• a basis for testing, validation, verification

Classifying requirements (classic)

8

• Functional: map inputs to outputs
• "The user can search either all databases or a subset."

• "Every order gets an ID the user can save to account storage."

• Nonfunctional: other constraints
• dependability, reusability, portability, scalability, performance, safety

• "Our deliverable documents shall conform to the XYZ process."

• "The system shall not disclose any personal user information."

Classifying requirements (Faulk)

9

• Behavioral (user-visible): about the artifact
• usually measurable and objective

• features, performance, security

• Development quality attributes: about the process
• usually subjective

• flexibility, maintainability, reusability

Example requirements types

10

• Feature set

• GUI

• Performance

• Reliability

• Expansibility (support plug-ins)

• Environment (HW, OS, browsers)

Eliciting requirements from users

11

The #1 reason that projects succeed is user
involvement.

Standish group survey of over 8000 projects

Easy access to end users is a critical success
factor in rapid-development projects.

Steve McConnell

Benefits of working with end-users

12

• Good relations improve development speed

• Improves perceived development speed

• They don’t always know what they want

• They do know what they want, and it changes over time

13

How to gather requirements

14

• Talk to the users, or work with them, to learn how they work.

• Ask questions throughout the process to "dig" for requirements.

• Think about why users do something in your app, not just what.

• Allow (and expect) requirements to change later.

How not to gather requirements

15

• Describe complex business logic or rules of the system.

• Be too specific or detailed.

• Describe the exact user interface used to implement a feature.

• Try to think of everything ahead of time. (You will fail.)

• Add unnecessary features not wanted by the customers.

Watch out for feature creep!

16

Watch out for feature creep!

16

• Feature creep: gradual accumulation of features over time.
• Often has a negative overall effect on a large software project.

Watch out for feature creep!

16

• Feature creep: gradual accumulation of features over time.
• Often has a negative overall effect on a large software project.

• Why does feature creep happen? Why is it bad?  
Can you think of any products that have had feature creep?

Watch out for feature creep!

16

• Feature creep: gradual accumulation of features over time.
• Often has a negative overall effect on a large software project.

• Why does feature creep happen? Why is it bad?  
Can you think of any products that have had feature creep?

• Because features are "fun"
• developers like to code them

• marketers like to brag about them

• users (think they) want them

• but too many means more bugs, more delays, less testing,

Documenting requirements

17

Premature optimization is the root of all evil.

Donald Knuth

DRY principle: Don't Repeat Yourself.
• Abstractions live longer than details.
• A good abstraction allows you to change/fix

details later.

The machine and the world: what (not) to say

18

• The requirements are in the application domain.
• The program defines the machine that has an

effect in the application domain.
• Example: a database system dealing with books.

Books, Authors,
Titles, etc.

Records,
databases,

pointers, etc.

The World The Machine

The machine and the world: what (not) to say

18

• The requirements are in the application domain.
• The program defines the machine that has an

effect in the application domain.
• Example: a database system dealing with books.

Books, Authors,
Titles, etc.

Records,
databases,

pointers, etc.

The World The Machine

There are things in the machine
that don’t represent anything in
the world (e.g., null pointers).

The machine and the world: what (not) to say

18

• The requirements are in the application domain.
• The program defines the machine that has an

effect in the application domain.
• Example: a database system dealing with books.

Books, Authors,
Titles, etc.

Records,
databases,

pointers, etc.

The World The Machine

There are things in the machine
that don’t represent anything in
the world (e.g., null pointers).

There are things in the world not
represented by a given machine (e.g.,
book sequels, pseudonyms).

Good or bad requirements?

19

• The system will enforce 6.5% sales tax on Washington purchases.

• The system shall display the elapsed time for the car to make one circuit
around the track within 5 seconds, in hh:mm:ss format.

• The product will never crash. It will also be secure against hacks.

• The server backend will be written using PHP or Ruby on Rails.

• The system will support a large number of connections at once, and each
user will not experience slowness or lag.

• The user can choose a document type from the drop-down list.

How do we specify requirements?

20

• Prototype

• Use cases

• Feature list

• Paper UI prototype

• Formal specification

You will create a System Requirements
Specification document for your project.

Summary

21

• Getting the requirements right is the single most
important (and hardest) task in a large software
engineering project.

• Talk to end-users but watch for feature bloat.

• Don’t Repeat Yourself.

