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Outline

* What is static analysis!?

* How does it work?

return p;

* Free and commercial tools )

throw new NoSuchElementException();
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source code of a program P to determine

whether it satisfies a property , such as

“P never deferences a null pointer”
“P does not leak file handles”

“No cast in P will lead to a
ClassCastException”

But it is impossible to write
such a tool! For any
nontrivial property , there
is no general automated
method to determine
whether P satisfies
(Rice’s theorem).

So, why are we
having this lecture!?
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What is practical static analysis?

A static analysis tool S analyzes the source code of a
program P to determine whether it satisfies a property
(P, but it can be wrong in one of two ways:

* If Sis sound, it will never miss any violations, but it may
say that P violates (p even though it doesn’t (resulting in
false positives).

* If S is complete, it will never report false positives, but it
may miss real violations of ¢ (resulting in false negatives).

What is a trivial way to
implement a sound analysis?
A complete analysis?



Soundness vs completeness

sound (overapproximate) analysis

possible program behaviors

complete
(underapproximate)

analysis




Applications of static analysis

e Compilers (sound)
* type checking, liveness analysis, alias analysis, ...
* Bug finding (usually complete)

* Verification (sound)



static analysis by example
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A toy static analysis: find a computation’s sign

* Given a program P, determine the sign (positive,
negative, or zero) of all of its variables.

* Applications:
* Check for division by 0

* Optimize by storing + variables as unsigned integers

* Check for negative array indices
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A toy static analysis: abstraction

concrete domain of ints abstract domain of signs

/ > ® positive ints

X =5

—» O ve i
« = -5 negative Ints
X =0

— © zero

\ a” intS (Unknown)
1

no ints (undefined)
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A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

e P+ P =

©+ 0=

©@+0=

@+ 0=
T/ =



A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

°c @+ O®=0O

©+ 0=

©@+0=

@+ 0=
T/ =



A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

c @+t@=@
- 0t+t0=0
e O+ (O =
e @+ 0=

T/ =



A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

c @+t@=@
- 0t+t0=0
c ©+0=0
e @+ 0=

T/ =



A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

- @+t@=0
- 0oto=0
« 0+0=0
c @+O0=T

T/ =



A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

- @+t@=0
- 0oto=0
« 0+0=0
c @+O0=T

T/e=1
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A toy static analysis: an example

Detected division by zero!
Just look for variables that
the analysis maps to L.
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A toy static analysis: another example
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A toy static analysis: another example

False positive! This program
can never throw an error, but
the analysis reports that f
may contain any value
(including undefined).
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Some state-of-the-art static analysis tools

e Astree
* Coverity

* Java PathFinder



Astree (sound)

* Proves the absence of runtime errors and undefined
behavior in C programs.

* Used to prove absence of runtime errors in

* Airbus flight control software

* Docking software for the International Space Station
* Many man-years of effort (since 2001) to develop.

e See www.astree.ens.fr/



http://www.astree.ens.fr/

Coverity (neither sound nor complete)

* Looks for bugs in C, C++, Java, and C#.
* Used by

() coverity-

 >|100 companies.

* NASA JPL (in addition to many other tools).

e Offered as a free, cloud-based service for
open-source projects.

* See www.coverity.com


http://www.astree.ens.fr/

Java PathFinder (sound but can be imprecise)

* Finds bugs in mission-critical Java code. O _

* Developed by NASA. /-O_(_>>-

NSt
* Focuses on concurrency errors (race U@)

conditions), uncaught exceptions.
* Free and open source!

* See babelfish.arc.nasa.gov/trac/jpf


http://www.astree.ens.fr/

summary

* Static analysis tools check if a program P
satisfies a property by

* (sound) overapproximation of P

* (complete) underapproximation of P

* Many uses from compilers to bug finding
to verification.

* Many high-quality tools available.

return p;

}

throw new NoSuchElementException();
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