CSE 403: Software Engineering, Spring 2015

courses.cs.washington.edu/courses/cse403/15sp/

Static Analysis

Emina Torlak
emina@cs.washington.edu

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/15sp/

Outline

* What is static analysis!?

* How does it work?

return p;

* Free and commercial tools)

throw new NoSuchElementException();

a brief introduction to static analysis

What is static analysis?

A static analysis tool S analyzes the
source code of a program P to determine
whether it satisfies a property , such as

“P never deferences a null pointer”
“P does not leak file handles”

“No cast in P will lead to a
ClassCastException”

What is static analysis?

A static analysis tool S analyzes the
source code of a program P to determine

whether it satisfies a property , such as

“P never deferences a null pointer”
“P does not leak file handles”

“No cast in P will lead to a
ClassCastException”

But it is impossible to write
such a tool! For any
nontrivial property , there
is no general automated
method to determine
whether P satisfies
(Rice’s theorem).

What is static analysis?

A static analysis tool S analyzes the
source code of a program P to determine

whether it satisfies a property , such as

“P never deferences a null pointer”
“P does not leak file handles”

“No cast in P will lead to a
ClassCastException”

But it is impossible to write
such a tool! For any
nontrivial property , there
is no general automated
method to determine
whether P satisfies
(Rice’s theorem).

So, why are we
having this lecture!?

What is practical static analysis?

What is practical static analysis?

A static analysis tool S analyzes the source code of a
program P to determine whether it satisfies a property
(P, but it can be wrong in one of two ways:

What is practical static analysis?

A static analysis tool S analyzes the source code of a
program P to determine whether it satisfies a property
(P, but it can be wrong in one of two ways:

* If Sis sound, it will never miss any violations, but it may
say that P violates (p even though it doesn’t (resulting in
false positives).

What is practical static analysis?

A static analysis tool S analyzes the source code of a
program P to determine whether it satisfies a property
(P, but it can be wrong in one of two ways:

* If Sis sound, it will never miss any violations, but it may
say that P violates (p even though it doesn’t (resulting in
false positives).

* If S is complete, it will never report false positives, but it
may miss real violations of ¢ (resulting in false negatives).

What is practical static analysis?

A static analysis tool S analyzes the source code of a
program P to determine whether it satisfies a property
(P, but it can be wrong in one of two ways:

* If Sis sound, it will never miss any violations, but it may
say that P violates (p even though it doesn’t (resulting in
false positives).

* If S is complete, it will never report false positives, but it
may miss real violations of ¢ (resulting in false negatives).

What is a trivial way to
implement a sound analysis?
A complete analysis?

Soundness vs completeness

sound (overapproximate) analysis

possible program behaviors

complete
(underapproximate)

analysis

Applications of static analysis

e Compilers (sound)
* type checking, liveness analysis, alias analysis, ...
* Bug finding (usually complete)

* Verification (sound)

static analysis by example

A toy static analysis: find a computation’s sign

A toy static analysis: find a computation’s sign

* Given a program P, determine the sign (positive,
negative, or zero) of all of its variables.

A toy static analysis: find a computation’s sign

* Given a program P, determine the sign (positive,
negative, or zero) of all of its variables.

* Applications:
* Check for division by 0

* Optimize by storing + variables as unsigned integers

* Check for negative array indices

A toy static analysis: abstraction

concrete domain of ints abstract domain of signs
® positive ints
© negative ints

®© zero

A toy static analysis: abstraction

concrete domain of ints abstract domain of signs
/ > @ positive ints
X =5
—» O ive i
D negative ints
X =0

— © zero

A toy static analysis: abstraction

concrete domain of ints abstract domain of signs

/ > ® positive ints

X =5

—» O ve i
« = -5 negative Ints
X =0

— © zero

A toy static analysis: abstraction

concrete domain of ints

_— e

5
- —» O
0
— ©
b 7?7 -1

abstract domain of signs

positive ints

negative ints

ZEro

all ints (unknown)

A toy static analysis: abstraction

concrete domain of ints

_— e

5
- —» O
0
— ©
b ? -1
0 \
y / -

abstract domain of signs

positive ints

negative ints

ZEro

all ints (unknown)

A toy static analysis: abstraction

concrete domain of ints abstract domain of signs

/ > ® positive ints

X =5

—» O ve i
« = -5 negative Ints
X =0

— © zero

\ a” intS (Unknown)
1

no ints (undefined)

A toy static analysis: abstraction

T

I

{i{i<0} @ © {0} © {i]i>0}

A toy static analysis: abstraction

AR
\

T

{i{i<0} @ © {0} © {i]i>0}

IN
IN

A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

e P+ P =

©+ 0=

©@+0=

@+ 0=
T/ =

A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

°c @+ O®=0O

©+ 0=

©@+0=

@+ 0=
T/ =

A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

c @+t@=@
- 0t+t0=0
e O+ (O =
e @+ 0=

T/ =

A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

c @+t@=@
- 0t+t0=0
c ©+0=0
e @+ 0=

T/ =

A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

- @+t@=0
- 0oto=0
« 0+0=0
c @+O0=T

T/ =

A toy static analysis: transfer functions

* Transfer functions specify how to evaluate program
expressions on abstract values.

- @+t@=0
- 0oto=0
« 0+0=0
c @+O0=T

T/e=1

A toy static analysis: an example

a = b5;

b = -3;
C = a x b;
d = 0;

e = Cc x d;
f =10 / e;

A toy static analysis: an example

a = @;

b = -3;
C = a x b;
d = 0;

e = Cc x d;
f =10 / e;

A toy static analysis: an example

a = @;

b = o;

C = a x b;
d = 0;

e = Cc x d;
f =10 / e;

A toy static analysis: an example

1 1 A |
SO0

-~ D Q. 0O T QD

10 / e;

A toy static analysis: an example

LI | I R | I
0O 0 0 0

-~ D QO O T QD

10 / e;

A toy static analysis: an example

D QO T Y
I | T I 1 I
IO ORNO RN

é/e;

A toy static analysis: an example

-~ (D QO O T QY
I T 1 B I 1
- © © O O &

A toy static analysis: an example

Detected division by zero!
Just look for variables that
the analysis maps to L.

-~ (D QO O T QY
I T 1 B I 1
- © © O O &

A toy static analysis: another example

a = 5;

b = -3;
C =a + b;
d = 0;

e =Cc - d;
f =10 / e;

A toy static analysis: another example

a = @;

b = -3;
C =a + b;
d = 0;

e =Cc - d;
f =10 / e;

A toy static analysis: another example

a = @;

b = o;

C =a + b;
d = 0;

e =Cc - d;
f =10 / e;

A toy static analysis: another example

-~ D Q. 0O T QD

A toy static analysis: another example

-~ D QO O T QD

A toy static analysis: another example

-~ D QO O T QW

A toy static analysis: another example

MDD Q0O T
44 © 4 0 &

s wu=m

A toy static analysis: another example

False positive! This program
can never throw an error, but
the analysis reports that f
may contain any value
(including undefined).

MDD Q0O T
44 © 4 0 &

s wu=m

state-of-the-art static analysis tools

Some state-of-the-art static analysis tools

e Astree
* Coverity

* Java PathFinder

Astree (sound)

* Proves the absence of runtime errors and undefined
behavior in C programs.

* Used to prove absence of runtime errors in

* Airbus flight control software

* Docking software for the International Space Station
* Many man-years of effort (since 2001) to develop.

e See www.astree.ens.fr/

http://www.astree.ens.fr/

Coverity (neither sound nor complete)

* Looks for bugs in C, C++, Java, and C#.
* Used by

() coverity-

 >|100 companies.

* NASA JPL (in addition to many other tools).

e Offered as a free, cloud-based service for
open-source projects.

* See www.coverity.com

http://www.astree.ens.fr/

Java PathFinder (sound but can be imprecise)

* Finds bugs in mission-critical Java code. O _

* Developed by NASA. /-O_(_>>-

NSt
* Focuses on concurrency errors (race U@)

conditions), uncaught exceptions.
* Free and open source!

* See babelfish.arc.nasa.gov/trac/jpf

http://www.astree.ens.fr/

summary

* Static analysis tools check if a program P
satisfies a property by

* (sound) overapproximation of P

* (complete) underapproximation of P

* Many uses from compilers to bug finding
to verification.

* Many high-quality tools available.

return p;

}

throw new NoSuchElementException();

20

