
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Spring 2015
courses.cs.washington.edu/courses/cse403/15sp/

Refactoring

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/15sp/

Outline

2

• Problem: code maintenance

• Refactoring: when, why, and how

• Refactoring in the real world

introcode maintenance is hard …

Problem: bit rot

4

Problem: bit rot

4

• After several months and new versions, many codebases
reach one of the following states:

• rewritten: nothing remains from the original code.

• abandoned: the original code is thrown out and rewritten
from scratch.

• …even if the code was initially reviewed and well-designed,
and even if later checkins are reviewed

Problem: bit rot

4

• After several months and new versions, many codebases
reach one of the following states:

• rewritten: nothing remains from the original code.

• abandoned: the original code is thrown out and rewritten
from scratch.

• …even if the code was initially reviewed and well-designed,
and even if later checkins are reviewed

• Why is this?

• Systems evolve to meet new needs and add new features

• If the code's structure does not also evolve, it will "rot"

Code maintenance …

5

Code maintenance …

5

• Code maintenance: modification of a software product
after it has been delivered.

Code maintenance …

5

• Code maintenance: modification of a software product
after it has been delivered.

• Purposes:

• fixing bugs

• improving performance

• improving design

• adding features

Code maintenance …

5

• Code maintenance: modification of a software product
after it has been delivered.

• Purposes:

• fixing bugs

• improving performance

• improving design

• adding features

• ~80% of maintenance is for non-bug-fix-related activities
such as adding functionality (Pigosky 1997)

Code maintenance is hard

6

Code maintenance is hard

6

• It's harder to maintain code than write new code.

• You must understand code written by another
developer, or code you wrote at a different time with
a different mindset

• Danger of errors in fragile, hard-to-understand code

Code maintenance is hard

6

• It's harder to maintain code than write new code.

• You must understand code written by another
developer, or code you wrote at a different time with
a different mindset

• Danger of errors in fragile, hard-to-understand code

• Maintenance is how developers spend most of
their time

• Many developers hate code maintenance. Why?

Code maintenance is hard

6

• It's harder to maintain code than write new code.

• You must understand code written by another
developer, or code you wrote at a different time with
a different mindset

• Danger of errors in fragile, hard-to-understand code

• Maintenance is how developers spend most of
their time

• Many developers hate code maintenance. Why?

• It pays to design software well and plan ahead so
that later maintenance will be less painful

• Capacity for future change must be anticipated

idealrefactoring: what, when, why, and how

What is refactoring?

8

• Refactoring: improving a piece of software's internal
structure without altering its external behavior.

• Incurs a short-term overhead to reap long-term benefits

• A long-term investment in overall system quality.

• Refactoring is not the same thing as:

• rewriting code

• adding features

• debugging code

Why refactor?

9

Why refactor?

9

• Why fix a part of your system that isn't broken?

Why refactor?

9

• Why fix a part of your system that isn't broken?

• Each part of your system's code has 3 purposes:

• to execute its functionality,

• to allow change,

• to communicate well to developers who read it.

Why refactor?

9

• Why fix a part of your system that isn't broken?

• Each part of your system's code has 3 purposes:

• to execute its functionality,

• to allow change,

• to communicate well to developers who read it.

• If the code does not do these, it is broken.

Why refactor?

9

• Why fix a part of your system that isn't broken?

• Each part of your system's code has 3 purposes:

• to execute its functionality,

• to allow change,

• to communicate well to developers who read it.

• If the code does not do these, it is broken.

• Refactoring improves software's design

• to make it more extensible, flexible,
understandable, performant, …

• but every improvement has costs (and risks)

When to refactor?

10

When to refactor?

10

• When is it best for a team to refactor their code?

• Best done continuously (like testing) as part of the process

• Hard to do well late in a project (like testing)

When to refactor?

10

• When is it best for a team to refactor their code?

• Best done continuously (like testing) as part of the process

• Hard to do well late in a project (like testing)

• Refactor when you identify an area of your system that:

• isn't well designed

• isn't thoroughly tested, but seems to work so far

• now needs new features to be added

Code “smells”: signs you should refactor

11

• Duplicated code; dead code

• Poor abstraction

• Large loop, method, class, parameter list

• Module has too little cohesion

• Modules have too much coupling

• Module has poor encapsulation

• A "middle man" object doesn't do much

• A “weak subclass” doesn’t use inherited functionality

• Design is unnecessarily general or too specific

Low-level refactoring

12

Low-level refactoring

12

• Names:

• Renaming (methods, variables)

• Naming (extracting) "magic" constants

Low-level refactoring

12

• Names:

• Renaming (methods, variables)

• Naming (extracting) "magic" constants

• Procedures:

• Extracting code into a method

• Extracting common functionality (including
duplicate code) into a module/method/etc.

• Inlining a method/procedure

• Changing method signatures

Low-level refactoring

12

• Names:

• Renaming (methods, variables)

• Naming (extracting) "magic" constants

• Procedures:

• Extracting code into a method

• Extracting common functionality (including
duplicate code) into a module/method/etc.

• Inlining a method/procedure

• Changing method signatures

• Reordering:

• Splitting one method into several to improve
cohesion and readability (by reducing its size)

• Putting statements that semantically belong
together near each other

See also
refactoring.com/
catalog/

http://refactoring.com/catalog/

IDE support for low-level refactoring

13

• Eclipse / Visual Studio support:

• variable / method / class renaming

• method or constant extraction

• extraction of redundant code snippets

• method signature change

• extraction of an interface from a type

• method inlining

• providing warnings about method  
invocations with inconsistent parameters

• help with self-documenting code  
through auto-completion

High-level refactoring

14

High-level refactoring

14

• Deep implementation and design changes

• Refactoring to design patterns

• Exchanging risky language idioms with safer alternatives

• Performance optimization

• Clarifying a statement that has evolved over time or is
unclear

High-level refactoring

14

• Deep implementation and design changes

• Refactoring to design patterns

• Exchanging risky language idioms with safer alternatives

• Performance optimization

• Clarifying a statement that has evolved over time or is
unclear

• Compared to low-level refactoring, high-level is:

• Not as well-supported by tools

• Much more important!

How to refactor?

15

• When you identify an area of your system that:

• is poorly designed

• is poorly tested, but seems to work so far

• now needs new features

• What should you do?

How to refactor? Have a plan!

16

Refactoring plan (1/2)

17

Refactoring plan (1/2)

17

• Write unit tests that verify the code's external correctness.

• They should pass on the current poorly designed code.

• Having unit tests helps make sure any refactor doesn't break
existing behavior (regressions).

Refactoring plan (1/2)

17

• Write unit tests that verify the code's external correctness.

• They should pass on the current poorly designed code.

• Having unit tests helps make sure any refactor doesn't break
existing behavior (regressions).

• Analyze the code to decide the risk and benefit of refactoring.

• If it is too risky, not enough time remains, or the refactor will not
produce enough benefit to the project, don't do it.

Refactoring plan (2/2)

18

Refactoring plan (2/2)

18

• Refactor the code.

• Some tests may break. Fix the bugs.

Refactoring plan (2/2)

18

• Refactor the code.

• Some tests may break. Fix the bugs.

• Code review the changes.

Refactoring plan (2/2)

18

• Refactor the code.

• Some tests may break. Fix the bugs.

• Code review the changes.

• Check in your refactored code.

• Keep each refactoring small; refactor one unit at a time.

• Helps isolate new bugs and regressions.

• Your checkin should contain only your refactor.

• Your checkin should not contain other changes such as
new features, fixes to unrelated bugs, and other tweaks.

realityrefactoring in the real world

Barriers to refactoring: “I don’t have time!”

20

• Refactoring incurs an up-front cost.

• Some developers don't want to do it

• Most managers don't like it, because they lose time and
gain “nothing” (no new features).

• However …

• Clean code is more conducive to rapid development

• Estimates put ROI at >500% for well-done code

• Finishing refactoring increases programmer morale

• Developers prefer working in a “clean house”

Barriers to refactoring: company/team culture

21

• Many small companies and startups skip refactoring.

• “We're too small to need it!”

• “We can't afford it!”

• Reality:

• Refactoring is an investment in quality of the company's
product and code base, often their prime assets.

• Many web startups are using the most cutting-edge
technologies, which evolve rapidly. So should the code.

• If a key team member leaves (common in startups) …

• If a new team member joins (also common) …

Refactoring and teamwork: communicate!

22

• Amount of overhead/communication needed depends on size of refactor.

• Small: just do it, check it in, get it code reviewed.

• Medium: possibly loop in tech lead or another dev.

• Large: meet with team, flush out ideas, do a design doc or design review, get
approval before beginning, and do a phased refactoring.

• Avoids possible bad scenarios:

• Two devs refactor same code simultaneously.

• Refactor breaks another dev's new feature they are adding.

• Refactor actually is not a very good design; doesn't help.

• Refactor ignores future use cases, needs of code/app.

• Tons of merge conflicts and pain for other devs.

Summary

23

• Refactoring improves internal
software structure without altering
its external behavior.

• Short-term overhead …

• But many long-term benefits

• Have a refactoring plan.

• Communicate the plan to your team.

