Midterm Exam and Sample Solutions CSE403 Summer 2006

Midterm Exam and Sample Solutions
CSE403 Summer 2006

July 24, 2006

Question # Points
1 (out of 3)
2 (out of 3)
3 (out of 3)
4 (out of 3)
5 (out of 3)
NAME: 6 (out of 3)
7 (out of 4)
8 (out of 8)
9 (out of 5)
10 (out of 5)
11 (out of 3)
12 (out of 3)
13 (out of 3)
14 (out of 4)
15 (out of 3)
TOTAL.: (out of 56)
I nstructions:

— Do not turn this page until instructed to do so.

— The exam is open book, open notes, closed laptops and other digital devices (to ensure fairness).

—You will have 60 minutes to work on the exam.

— There are 15 short-answer questions, intended to take you on average 4 minutes each. (Our answers to most
questions are literally 2-3 lines.)

— Questions are worth between 3 and 8 points, for atotal of 56 points.

— Do not spend too much time on any one question.

— If you need to refer to written sources (books, articles) in your answers, be sure to cite them.

— If you need additional space for any of the questions, use the last page. Y ou may attach an additional sheet
too, but be sure to put your name on it and to let us know that you have additional sheets.

— In your answers we will be looking primarily for solid understanding of the main concepts and ideas, and
reasoning about how they interrelate, not evidence of strong memory or knowledge of “the right answer.”

Page 1 of 6

Midterm Exam and Sample Solutions CSE403 Summer 2006

Q1 (3 pts): Consider the following two graphs that (roughly) represent the time spent developing a product at
each point between the initial gathering of requirements (start) and the deployment / shipping (deadline). One
graph relates to the waterfall lifecycle model, while the other corresponds to the spiral lifecycle model.

Waterfall Spiral
Time spent Time spent
working on working on
I~ NN
the product the product
| |
deadline deadline

What causes the key differences, visible in the graphs, between the two models?

A: Inthewaterfall modél it isnot known until the very end how many hoursthe development effort will
take, because (a) thereis no feedback from customers after the requirements stage (and so the resulting
“finished” product may befar from the actual customer needs, thusrequiring further non-trivial work at
the end), and (b) testing isdone at the very end of thelifecycle, so problemsthat may significantly stretch
the development are not caught early enough to allow for morerealistic scheduling. Asaresult, projects
on thewaterfall model tend torequirealot of overtime and “ death march”-style effort toward the end.
In contrast, with the spiral model both customer feedback and testing aretypically done as part of each
iteration, ther eby allowing for more accurate scheduling of the work.

(Note: Thisisalong and reasonably complete answer, intended to give you thefull picture. Wedid not
expect you to writethismuch in your answers—just to mark theimportant aspects.)

Q2 (3 pts): What is the software engineering term for what is described below? What is missing from it?
(Note: You do not need to fill in the missing part —just state what it is.)

1. Create your list of DVDsonline

2. We rush you DV Ds from your list

3. Keep each DVD aslong as you want

4. Return amovie to get a new one from your list
(Source: arecent ad by Netflix)

A: Thisisan example of amain success scenario (MSS) of a use case. Missing are any details of what
might go wrong in one of the steps and how such a problem would be resolved.

Q3 (1+2 pts): Expressin Big-O notation the number of communication paths in ateam as a function of the
team size N, if everyone needs to be able to communicate with:

(@) only the team manager?

A: O(N) —there’ s (N-1) people communicating with one, so (N-1) communication paths are needed.
(b) everyone else?

A: O(N? —there's N people who need to each communicate with (N-1) of their colleagues, so there's
N*(N-1)/2 communication paths. Thisaccountsfor thefact that the communication of person A to

person B isthe same as that of person B to person A.

In both cases, give brief explanations.

Page 2 of 6

Midterm Exam and Sample Solutions CSE403 Summer 2006
Q4 (3 pts): Identify at least five different stakeholders of atypical software industry project.

A: Developers, testers, project manager, marketing team, customers, shareholders, project owner,
project champion, etc.

Q5 (1+2 pts):
(a) What are the main problems with doing too little high-level architectura design (a.k.a. “under-design™)
before coding begins?

A: With too little ar chitectural design done upfront, the development team risks not considering (or even
missing) an important component or interaction between components. Thiswould later require
expensivere-architecting of the product.

(b) What are the main problems with doing too much high-level architectural design (a.k.a. “over-design™)
before coding begins?

A: Doing too much of architectural design upfront may result in wasted effort, as some of the (especially
mor e detailed) aspects may later need to change, for example, due to unforeseen technical difficulties.
Also, an extrainvestment upfront in architectural design meansthat lesstimewill beleft in the project
schedule for other important tasksthat follow — detailed design, testing, coding...

Q6 (3 pts): From adesign perspective, should a class expose aminimal but sufficient interface (i.e., set of
public methods) to its clients or should it expose an interface that provides all methods that its clients might
ever need? Explain.

A: Narrower interfaces (having fewer public methods) declarelooser contracts between a classand its
clients, which supports, rather than hurts, future extensibility. Thisisalso related to the concept of
information hiding.

Q7 (4 pts): Consider the definition of the method i nst al | Door () , written in Java-like pseudo-code, from the
Cont ract or class.

class Contractor {
/1 any necessary instance vari abl es
/1 and methods defined here

i nstal |l Door () {
subcontractor = Yel |l owPages. get Subcontractor();
carpenter = subcontractor.getCarpenter();
door Handl e = car pent er. get Door Handl e() ;
door Body = car penter. get Door Body() ;
screws = carpenter.getScrews();
door = carpenter.assenbl e(door Handl e, door Body, screws);
securityExpert = subcontractor. getSecurityExpert();
securityExpert.install Door Sensors(door);

}

}

What major design flaw is evident from the definition of the method? Which design principle(s) are violated?
Y ou can assume that any errorsin method callsinsidei nst al | Door () are handled properly.

A: Intheworld of contractorsand subcontractors, too much micromanaging occurs here. The method is
tightly coupled to the classes of which subcontract or, carpent er, and securi t yExpert areinstances.

Page 3 of 6

Midterm Exam and Sample Solutions CSE403 Summer 2006

Depending on details of theimplementation of these classes makesit fragile, breaking the codeif any of
those details change. Violated principlesinclude weak coupling, the Law of Demeter, and encapsulation.

Q8 (3+5 pts): Designing systems that can easily accommodate changes is an important part of what software
engineersdo. Imagine starting a design with a set of concrete (i.e., non-abstract) classes, but intending to
eventually be able to make some of those classes abstract — as the need arises to refine (by sub-classing) the
concepts that those initial classes represent. (For instance, the class Ani mal , initially concrete, may need to be
refined into Bi r d, LandAni mal , and Mar i neAni mal , and so Ani mal will become an abstract class, holding only
the common aspects of those three sub-classes.) Initialy, however, you do not know what those refinements
will be, so you can not predict which concrete classes will need to evolve into abstract ones.

(a) Would it make sense to start the design by making each one of your concrete classes derive from its own
abstract class (with the hope that other sub-classes of those same abstract ones will become necessary)? Briefly
explain.

A: Although possible, thisapproach will likely result in unnecessarily complex hierarchy of classes that
the development team then will need to maintain in case some part of it ever becomes necessary.

(b) Assuming you do not want to take the approach in (a), how can you construct objects of your classes
without having to make changes to their already existing clients?

Hint: Theissueisthat aclient may be tempted to call a constructor of your (initially concrete) class, but
eventually — as your class evolves into an abstract one — there will no longer be a constructor, and so the client
code will break and be forced to change. Unless you design the construction process differently... How?

A: Haveapublicget I nstance() method in your classes and makeall constructorsprivate. Thisway, the
clientswill haveto call get I nst ance(), which will then invoke the proper constructor —either of the class
if it isa concrete class, or of oneof itssub-classesif the current oneisabstract.

Q9 (2+3 pts):
(a) What changes to the design of your product would be required in order to deploy it in another country?
(Internationalization is the technical term for this activity.) Be concise but specific.

A: Theanswer herewould depend on the project and so it isnecessarily open-ended. Typical
considerationsin internationalization aretransating GUI items and documentation, as well as making
the product culturally appropriate. Thelatter includesusing colors properly (certain colors may be
associated with different ideasin different countries); organizing presented information left to right
versusright to left or top to bottom; incorporating ideasthat are culturally popular in the target country;
and changing or even removing certain aspects, depending on the legal and social environment of the
target country.

(b) Focusing on just one type of changes (from those you mentioned in your answer above), briefly describe
how specifically those changes might be accommodated in your current product.

A: Consider thetask of trandation of GUI items. Oneoption isfor thetext (or icon) associated with such
an item to be dynamically retrieved from a database (based on a configuration of which country it is
intended for) and placed visually on top of that GUI item whose other characteristics (size, color, etc.) are
predetermined. Thereisarisk with thisapproach —in somelanguages (per hapslanguagesthat are
added later) the text may not fit the fixed size of the GUI item. A better option isto haveall GUI items be
pre-computed and stored in afolder (or database), along with all other itemsfor the given target country.
At runtime, each such item isretrieved (again, based on a configuration of which country it isintended
for) and dynamically placed in the GUI. Thisapproach avoidsthefragility of thefirst option.

(Note: The above answer islonger that we expected from you on the exam.)

Page 4 of 6

Midterm Exam and Sample Solutions CSE403 Summer 2006

Q10 (5 pts): Consider being hired to develop a software library for a customer. How do the various principles
of usability design apply specifically to the design of the API? (Hint: One example of applying the principle of
mapping is that function names in your library should clearly communicate the correspondence (i.e., the
mapping) between the respective function and its operation.)

A: A well designed API should expose functionsthat enable clientsto manipulate all necessary parts of
thelibrary, aswell asfunctionsto query persistent state. Thisisreflected in the principles of visibility
and feedback. Further, the names of thelibrary functions should afford their function. These names
should also clearly communicate the mapping between each function and its particular operation, while
hiding unnecessary complexity. Finally, the set of library function names should help the user of the API
to easily develop an accurate conceptual model of the library’sintent and oper ation.

Q11 (3 pts): Was your team’s zero-feature release a horizontal or avertical prototype? Wasit an evolutionary
or athrowaway prototype? Explain.

A: Weexpect that it was horizontal and evolutionary, in accordance with theidea of “flushing thetool
chain” before having any featuresimplemented. However, depending on your project risks and
decisions, other combinations are possible. Note: Your justification iscrucial here.

Q12 (3 pts): Name two risks that early prototyping helps to address.

A: Herearethreerisks (and thereare more):

- reduced predictability about how long a project would take to complete;
- potential absence of interested customers;

- developing a product that isfar from the customers’ needs.

Q13 (3 pts): Why isit critically important for larger projects to use an automated build process?

A: The most important reason isthat it produces consistent, reproducible build artifactsin away that is
lesserror-pronein comparison to doing so manually. Other correct but incomplete answers arethat an
automated build process saves development time and it also decr eases the time to build the full product
from the sour ce code.

Q14 (4 pts): Consider the case of building a system that relies on third-party library code. Should these third-
party elements be kept under version control (e.g., in CVS) aong with the rest of your code? Why or why not?

A: Itisimportant that third party library code be kept under version control aswell. Thereason isthat
thelibrary’svendor may need to make changesto their code, moving to the next version, and if your code
depends on aspects of a previousversion of that library, thismay unexpectedly break (and require
reworking) some of your product.

Q15 (3 pts): Briefly explain the idea behind regression testing.
A: Regression testing isabout running (accumulated) old tests along with the new ones, to ensure that

new code (or newly introduced changesto old code) do not break code that used to work and that had
previously successfully passed the old tests.

Page 5 of 6

Midterm Exam and Sample Solutions CSE403 Summer 2006

Note: Usethis page as additional space (if you need it) and be sure to indicate which problem(s) your notes
here correspond to.

Page 6 of 6

