
Requirements

Lecture outline

• What are requirements?

• How can we gather requirements?

• How can we document requirements?

• Use cases

Software requirements

Requirements specify what to build

• tell “what” and not “how”

• tell the problem, not the solution

• reflect system design, not software design

“what vs. how”: it’s relative

• One person’s what is another person’s how.
– “One person’s constant is another person’s variable.”

[Perlis]

• Input file processing is the what, parsing is the how

• Parsing is the what, a stack is the how

• A stack is the what, an array or a linked list is the
how

• A linked list is the what, a doubly linked list is the
how

• A doubly linked list is the what, Node* is the how

Why requirements?

• Some goals of doing requirements:
– understand precisely what is required of the software

– communicate this understanding precisely to all development
parties

– control production to ensure that system meets specs (including
changes)

• Roles of requirements
– customers: show what should be delivered; contractual base

– managers: a scheduling / progress indicator

– designers: provide a spec to design

– coders: list a range of acceptable implementations / output

– QA / testers: a basis for testing, validation, verification

Classifying requirements

• The classic way to classify requirements:

– functional: map inputs to outputs

• "The user can search either all databases or a subset."

• "Every order gets an ID the user can save to account storage."

– nonfunctional: other constraints

• ilities: dependability, reusability, portability, scalability, performance,
safety

• "Our deliverable documents shall conform to the XYZ process."
• "The system shall not disclose any personal user information."

• Another way to classify them (S. Faulk, U. of Oregon)

– Behavioral (user-visible): about the artifact (often measurable)

• features, performance, security

– Development quality attributes: about the process (can be
subjective)

• flexibility, maintainability, reusability

General classes of requirements

Example requirements types:
Feature set
GUI
Performance
Reliability
Expansibility (support plug-ins)
Environment (HW, OS, browsers)
Schedule

Gather requirements from users

The #1 reason that projects succeed is user

involvement

– Standish group survey of over 8000 projects

Easy access to end users is one of three

critical success factors in rapid-development

projects

– Steve McConnell

How do we gather requirements?

Benefits of working with customers:

– Good relations improve development speed

– Improves perceived development speed

– They don’t always know what they want

– They do know what they want, and it changes

over time

"Digging" for requirements

How does one find out the requirements for a project?

• Do:
– Talk to the users, or work with them, to learn how they work.

– Ask questions throughout the process to "dig" for requirements.

– Think about why users do something in your app, not just what.

– Allow (and expect) requirements to change later.

• Don't:
– Describe complex business logic or rules of the system.

– Be too specific or detailed.

– Describe the exact user interface used to implement a feature.

– Try to think of everything ahead of time. (You will fail.)

– Add unnecessary features not wanted by the customers.

Feature creep/bloat

• feature creep: Gradual accumulation of features over time.
– Often has a negative overall effect on a large software project.

• Why does feature creep happen? Why is it bad?
Can you think of any products that have had feature creep?

– Because features are "fun"
• developers like to code them

• marketers like to brag about them

• users (think they) want them

• ... but too many means more bugs, more delays, less testing, ...

• "stone soup" and "boiled frog" analogies

DRY and abstractions

• Y2K was (in a sense) a requirements problem.
– coders didn't consolidate date logic in one place for easy change

– should have had a requirement such as:
• "The system will be designed for expandability such that it can be

easily modified later to work in years 2000 and beyond."

• DRY principle: Don't Repeat Yourself.
– Abstractions live longer than details.

– A good abstraction allows you to change/fix details later.

• "Premature optimization is the root of all evil." -- Donald
Knuth

The machine and the world

Books, Authors,

Titles, etc.

Records,

databases,

pointers, etc.

The World The Machine

14

• The requirements are in the application domain

• The program defines the machine that has an
effect in the application domain

• Example: a database system dealing with books

• There are things in the world not
represented by a given machine
– Book sequels or trilogies

– Pseudonyms

– Anonymous books

• There are things in the machine that

don’t represent anything in the world

– Null pointers

– Deleting a record

– Back pointers

Good or bad requirements? (and why?)

• The system will enforce 6.5% sales tax on Washington
purchases.

• The system shall display the elapsed time for the car to
make one circuit around the track within 5 seconds, in
hh:mm:ss format.

• The product will never crash. It will also be secure against
hacks.

• The server backend will be written using PHP or Ruby on
Rails.

• The system will support a large number of connections at
once, and each user will not experience slowness or lag.

• The user can choose a document type from the drop-down
list.

How do we specify requirements?

• Prototype
• Use Cases
• Feature List
• Paper UI prototype

You will create a

System Requirements Specification document

Cockburn's requirements template

Alistair Cockburn’s suggested outline for functional requirements:
1. purpose and scope
2. terms / glossary
3. use cases (the central artifact of requirements)
4. technology used
5. other

5a. development process -
participants, values (fast-good-cheap),
visibility, competition, dependencies

5b. business rules / constraints
5c. performance demands
5d. security (now a hot topic), documentation
5e. usability
5f. portability
5g. unresolved / deferred

6. human issues: legal, political, organizational, training

Use cases

• A use case is an example behavior of the system

• A use case characterizes a way of using a system

• It represents a dialog between a user and the system, from
the user’s point of view

• It captures functional requirements

• Example:
– Jane has a meeting at 10AM; when Jim tries to schedule

another meeting for her at 10AM, he is notified about the
conflict

• Similar to CRC (class responsibility collaborator) cards and
Extreme Programming “stories”

Qualities of a good use case

• starts with a request from an actor to the system
• ends with the production of all the answers to

the request
• defines the interactions (between system and

actors) related to the function
• takes into account the actor's point of view, not

the system's
• focuses on interaction, not internal system

activities
• doesn't describe the GUI in detail
• has 3-9 steps in the main success scenario
• is easy to read
• summary fits on a page

Benefits of use cases
• Establish an understanding

between the customer and the
system developers of the
requirements (success scenarios)

• Alert developers of problematic
situations (extension scenarios)

• Capture a level of functionality to
plan around (list of goals)

Terminology

Actor: someone who interacts with the system

Primary actor: person who initiates the action

Goal: desired outcome of the primary actor

Level: top-level or implementation

– summary goals

– user goals

– subfunctions

22

Use cases and actors

• Use cases represent specific flows of events in

the system

• Use cases are initiated by actors and describe

the flow of events that these actors are

involved in

– Anything that interacts with a use case

– It could be a human, external hardware (like a

timer), or another system

Do use cases capture these?
Which of these requirements should be

represented directly in a use case?

1. Order cost = order item costs * 1.065 tax

2. Promotions may not run longer than 6 months

3. Customers only become Preferred after 1 year

4. A customer has one and only one sales contact

5. Response time is less than 2 seconds

6. Uptime requirement is 99.8%

7. Number of simultaneous users will be 200 max

Styles of use cases

1. Use case diagram

– often in UML, the Unified Modeling Language

2. Informal use case

3. Formal use case

(≠ formal specification)

Let's examine each of these in detail...

1. Use case summary diagrams

The overall list of your system's use cases
can be drawn as high-level diagrams, with:

– actors as stick-men, with their names (nouns)

– use cases as ellipses, with their names (verbs)

– line associations, connecting an actor to a use
case in which that actor participates

– use cases can be connected to other cases
that they use / rely on

Library patron

Check out book

Use case summary diagrams

It can be useful to create a list or table of primary
actors and their "goals" (use cases they start). The
diagram will then capture this material.

Actor Goal
Library Patron Search for a book

Check out a book

Return a book

Librarian Search for a book

Check availability

Request a book from
another library

Use case summary diagram 1
Library System

Search

Record new

Reserve

Check out

Librarian

Library Patron

Gen catalog

Use case summary diagram 2

Investment
System

2. Informal use case
Informal use case is written as a paragraph

describing the scenario/interaction

• Example:
– Patron Loses a Book

The library patron reports to the librarian that she has
lost a book.
The librarian prints out the library record and asks
patron to speak with the head librarian, who will
arrange for the patron to pay a fee.
The system will be updated to reflect lost book, and
patron's record is updated as well.
The head librarian may authorize purchase of a
replacement book.

Structured natural language

• I
– I.A

• I.A.ii
– I.A.ii.3

» I.A.ii.3.q

• Although not ideal, it is almost always better than
unstructured natural language
– Unless the structure is used as an excuse to avoid

content

• You will probably use something in this general
style

30

3. Formal use case

Goal Patron wishes to reserve a book using the online

catalog

Primary

actor

Patron

Scope Library system

Level User

Precondition Patron is at the login screen

Success end

condition

Book is reserved

Failure end

condition

Book is not reserved

Trigger Patron logs into system

Main Success

Scenario

1. Patron enters account and password

2. System verifies and logs patron in

3. System presents catalog with search screen

4. Patron enters book title

5. System finds match and presents location

choices to patron

6. Patron selects location and reserves book

7. System confirms reservation and re-presents

catalog

Extensions

(error

scenarios)

2a. Password is incorrect

2a.1 System returns patron to login screen

2a.2 Patron backs out or tries again

5a. System cannot find book

5a.1 …

Variations

(alternative

scenarios)

4. Patron enters author or subject

What notation is good?

• There are standard templates for requirements documents,
diagrams, etc. with specific rules. Is this a good thing?
Should we use these standards or make up our own?

– Good: standards are helpful as a template or starting point;
Others are more likely to understand

– But don't be a slave to formal rules or use a model/scheme that
doesn't fit your project's needs.

Steps in creating a use case

1. Identify actors and their goals

What computers, subsystems and people will drive our

system? (actors)

What does each actor need our system to do? (goals)

Exercise: actors/goals for your projects

Identify actors/goals example

• Consider software for a video store kiosk that takes the
place of human clerks.
– A customer with an account can use their membership and

credit card at the kiosk to check out a video.

– The software can look up movies and actors by keywords.

– A customer can check out up to 3 movies, for 5 days each.

– Late fees can be paid at the time of return or at next checkout.

• Exercises:
– Come up with 4 use case names for such software, and draw a

UML use case summary diagram of the cases and their actors.

– Write a formal (complete) use case for the Customer Checks Out
a Movie scenario.

2. Write the success scenario

• Main success scenario is the preferred
"happy path”
– easiest to read and understand

– everything else is a complication on this

• Capture each actor's intent and
responsibility, from trigger to goal delivery
– say what information passes between them

– number each line

3. List the failure extensions
• Usually, almost every step can fail (bad credit, out of stock)

• Note the failure condition separately, after the main success
scenario

• Describe failure-handling
– recoverable: back to main course (low stock + reduce quantity)
– non-recoverable: fails (out of stock, or not a valued customer)
– each scenario goes from trigger to completion

• Label with step number and letter:

– 5a failure condition
• 5a.1 use case continued with failure scenario

• 5a.2 continued

• Exercise: What happens if a student looks up a course, and it doesn’t exist?

4. List the variations

� Many steps can have alternative behaviors or
scenarios

� Label with step number and alternative
o 5’. Alternative 1 for step 5
o 5’’. Alternative 2 for step 5

Use case description

• How and when it begins and ends

• The interactions between the use case and its

actors, including when the interaction occurs

and what is exchanged

• How and when the use case will need data

from or store data to the system

• How and when concepts of the problem

domain are handled

Jacobson example: recycling

The course of events starts when the customer presses

the “Start-Button” on the customer panel. The panel’s

built-in sensors are thereby activated.

The customer can now return deposit items via

the customer panel. The sensors inform the system that

an object has been inserted, they also measure the

deposit item and return the result to the system.

The system uses the measurement result to

determine the type of deposit item: can, bottle or crate.

The day total for the received deposit item type is

incremented as is the number of returned deposit items

of the current type that this customer has returned...

Another example: Buy a product
http://ontolog.cim3.net/cgi-bin/wiki.pl?UseCasesSimpleTextExample

1. Customer browses through catalog and selects items to buy

2. Customer goes to check out

3. Customer fills in shipping information

4. System presents full pricing information, including shipping

5. Customer fills in credit card information

6. System authorizes purchase

7. System confirms sale immediately

8. System sends confirming email to customer

• Alternative: Authorization Failure

– At step 6, system fails to authorize credit purchase

– Allow customer to re-enter credit card information and re-try

• Alternative: Regular Customer

– 3a. System displays current shipping information, pricing information,

and last four digits of credit card information

– 3b. Customer may accept or override these defaults

– Return to primary scenario at step 6

Pulling it all together

How much is enough?

You have to find a balance

comprehensible vs. detailed

graphics vs. explicit wording and tables

short and timely vs. complete and late

Your balance may differ with each customer

depending on your relationship and flexibility

