
CSE 403

Software Engineering

Pragmatic Programmer Tip: Care about Your Craft

Why spend your time developing software

unless you care about doing it well?

Spring 2014
www.cs.washington.edu/education/courses/403/14sp/

Course staff

• Michael Ernst

• Brian Burg

• Isaac Reynolds

• Jackson Roberts

Email: cse403-ta@cs.washington.edu

What is software engineering?

• Software engineering ≠ programming

• Software engineering ≠ computer science

• Software engineering: Creating and maintaining software
applications by applying technologies and practices from
computer science, project management, and other fields.

• Software engineering is about people working in teams
under constraints to create value for their customers

• Software engineering is a discipline.

The first step toward the management of disease was replacement of

demon theories and humours theories by the germ theory. That very

step, the beginning of hope, in itself dashed all hopes of magical

solutions. It told workers that progress would be made stepwise, at

great effort, and that a persistent, unremitting care would have to be

paid to a discipline of cleanliness. So it is with software engineering

today. -- Fred Brooks

Aspects of software engineering

1. Processes necessary to turn a concept into a
robust deliverable that can evolve over time
2. Working with limited time and resources
3. Satisfying a customer
4. Managing risk
5. Teamwork and communication

Ties to many fields

• computer science (algorithms, data structures, languages, tools)

• business/management (project mgmt, scheduling)

• economics/marketing (selling, niche markets, monopolies)

• communication (managing relations with stakeholders: customers,

management, developers, testers, sales)

• law (patents, licenses, copyrights, reverse engineering)

• sociology (modern trends in societies, localization, ethics)

• political science (negotiations; topics at the intersection of law,

economics, and global societal trends; public safety)

• psychology (personalities, styles, usability, what is fun)

• art (GUI design, what is appealing to users)

Necessarily “softer” than other parts of CS; fewer clearly right/wrong answers

Roles of people in software

– customer / client: wants software built
• often doesn't know what he/she wants

– managers: make plans, coordinate team
• difficult to foresee all problems and issues in advance

– developers: design and write code
• it is hard to write complex code for large systems

– testers: perform quality assurance (QA)
• it is impossible to test every combination of actions

– users: purchase and use software product
• users can be fickle and can misunderstand the product

Making software is hard

• Historically, ~ 85% of software projects "fail."
Why?
– management sets unrealistic expectations; devs don't correct them
– overestimating the positive impact of shiny new tools and hardware
– hired developers based on availability despite warning signs
– personality conflicts between developers
– changes in rate structure requirements in middle of work
– one delay causes another (dev delay leads to test delay, etc.)
– hacks and shortcuts
– developers end up working "death marches" (6-day, 10-hour weeks)
– overestimating how nearly done you are ("I'm 90% there!")
– software written doesn't match the spec
– developer time taken away by other tasks
– tons of bugs come out in testing
– developers don't listen to testers; ignore severity of bugs reported
– management breaking promises (bonuses, time off, etc.)

Making software is hard – Pitfalls to avoid

People Process Product Technology

• Undermined motivation

• Weak personnel

• Uncontrolled problem
employees

• Heroics

• Adding people to a late
software project

• Noisy, crowded offices

• Friction between
developers and
customers

• Unrealistic expectations

• Lack of effective project
sponsorship

• Lack of stakeholder buy-
in

• Lack of user input

• Politics placed over
substance

• Wishful thinking

• Overly optimistic
schedules

• Insufficient risk
management

• Contractor failure

• Insufficient planning

• Abandonment of planning
under pressure

• Wasted time during the
"fuzzy front end"

• Shortchanged upstream
activities

• Inadequate design

• Shortchanged quality
assurance

• Insufficient management
controls

• Premature or overly
frequent convergence

• Omitting necessary tasks
from estimates

• Planning to catch up later

• Code-like-hell
programming

• Requirements gold-
plating

• Feature creep

• Developer gold-plating

• Push-me, pull-me
negotiation

• Research-oriented
development

• Silver-bullet syndrome

• Overestimated savings
from new tools or
methods

• Switching tools in the
middle of a project

• Lack of automated
source-code control

A typical 403 week

1. Class sessions to discuss best practices (MWF)

2. Sections to dig deeper and/or discuss pragmatics
and tools (Thursday)

3. Readings and assignments to reinforce the
concepts

4. Group project to give you experience with the
material

– You’ll meet technical challenges given the larger
project

– You’ll meet social challenges given the team effort

– Frequent meetings (at minimum, each Tuesday)

What is a software project?

Projects are a balance of three dimensions, with the
goal of producing a successful deliverable

Features & Quality

Time Resources

SOFTWARE

DELIVERABLE

“Good, fast, cheap … choose two”

The Project

• You make product proposals - this Thurs/Fri

– And then vote on which products to “fund”

• You’re divided into project teams of 6-8 students

– Larger teams, larger projects, like industry

• You develop your deliverable in stages

– See next slide

• Another team will act as your customer

– A project is successful only if it satisfies its customer

Project development stages

Project development in stages
– Proposal

– Requirements

– Design

– Implementation

– Testing, validation, verification

– Documentation

– Customer exposure

– Final deliverable

• Reflects modern methodologies for effective
development

• Regular feedback from customers and your own team

Assignment 1 - Proposals

• Your chance to turn a great idea into a product!

• Prepare a 3-slide, 3-minute pitch in teams of 2

– Vision

– Software architecture

– Novelty

– Challenges and risks

• Turn in Wed by 11pm and present on Thu & Fri

• Vote next Monday by 2pm

– Rank your choices

– Self-select groups (or the staff will…)

Project culture

• This is a real project
– We expect you to work to build a real system

– To be used by real people

• Take responsibility
– Take initiative

– Find and solve problems yourselves

– Coding is only part of the job

– Good planning and design, hitting your market, and
working well with your team, are all needed for
success

Communication

• Foundation of the success of our team was

communication

• Team communication and cooperation are all-important

• Working together (physically) was good

• Well-run and consistently scheduled meetings help a

project a lot

Lessons from past students

Scheduling

• We often underestimated tasks. If we had spent more

time analyzing each task and breaking it down into more

manageable chunks our estimated completion times

would have been more accurate.

• Get things done early; don’t cram at the end

• Remember you can cut features (triple constraint)

• Don’t underestimate the difficulty of learning new

programming languages, frameworks, and tools

Lessons from past students

Testing and coordination

� Thoroughly testing your code and ensuring that your

code passes all current tests before submitting is very

helpful

� We needed a better upfront testing design

� We learned (through some pain) to ensure to do small,

frequent updates and commits. Failing to do this results

in merges that can be a nightmare.

Lessons from past students

Goals of 403

(What's in it for you?)

• see how software is produced, from idea to
ship to maintenance

• get exposure to software development
practices in use today

• get experience collaborating in a team toward
a common goal

• be able to articulate and understand ideas

• understand issues and tradeoffs in decisions
as a manager

Unique aspects of CSE 403

• cross-disciplinary nature of the subject

• larger teams

• propose and work on your own ideas

• course staff in the "coach" role

• mistakes along the way are encouraged, not penalized

– have a rationale; don’t make the same mistake twice

• few clearly right/wrong answers

• plans always change

• content: software design, testing, project
management, etc.

Could you learn just as much at an

internship?
Probably not:

• Focused on one role in the team (often dev. or test)

• Requirements, arch, high-level design may be set

• Less opportunity for reflection

• Less generalization (such as from reading and
discussing papers)

• Mentor may be more focused on results than process
and developing you as an engineer

Internships are complementary to CSE 403

People who have had internships learn different things in
CSE 403, but no less

Is software engineering different?

Are the problems faced in software any different than those
faced in other engineering fields?

• Arguments in favor:
– testing software quality is hard (example: the halting problem)
– lower barrier to entry
– immaturity of the discipline
– customer expectations: quality, delivery timeline, etc.
– fast pace of technological change
– software is easier to copy

• Arguments against:
– software isn't always "soft"

• change is not easy, yet requirements do change

• change often forces a rewriting of major parts of the software

– developers still need to plan, execute, test, and sell

– the discipline is still in its infancy

