Building Software Large and
Small

Notes from the Field

Cornell University — 1992
University of Washington — 1999
Amazon.com — 1999-2006/

2008-now amazoncom.
Marchex — 2006-2008 a~
MARCH EE

In China— 2010 - 2013
Kindle Bookstore - today

My experience at Amazon

Supply Chain systems (2.5 years)
Website Merchandising (1.5 years)
Website Operations (2 years)
Grocery Delivery Logistics (1.5 years)
Amazon China Website (3 years)
Kindle (current)

Software Design Process Fails

HealthCare.gov Get Insurance

Individuals & Families Small Businesses All Topics v

Improving The Health Insurance Marketplace online application isn't available from approximately 1 a.m. to 5 a.
we make improvements. Additional down times may be possible as we work to make things better. The

HealthCare.gOV and the Marketplace call center remain available during these hours.

Find health coverage
that works for you

Get quality coverage at a price you can afford.
Open enrollment in the Health Insurance Marketplace
continues until March 31, 2014.

APPLY ONLINE APPLY BY PHONE

Theory vs. Practice
* Theory —

— Agile — incremental delivery, people over process
— Waterfall = BAD
* Practice

— Multi-year projects, Gantt charts, “sprints”,
unhappy customers --- effectively waterfall

e Why?

Goal of Software Process

* Deliver an agreed upon working piece of
software to the customer at an agreed upon
time.

Requirements | .

»
|

Design | "'h.l

-

Implementation —,
v

Verification '

.‘i

Maintenance

Relative Cost of Bug Fixes

st
=
o
—
o
o
[T
o
i
[¥y]
L=
L
(18]
-
e
AL
@
o

Design Code DevlT AccT Ops

Source: Barry Boghm: EQLITY Kevnole Addross”™, Mareh 19th, 2007

Process

* Goal: Deliver an agreed upon working piece of
software to the customer at an agreed upon
time.

* Observations:

— Bugs found earlier in the development process are
less costly to fix

e Solution:

— Invest more earlier in the process to get it right

Database
Server

Data

(4)

Web Application Architecture

Application [&— (2b) Sfir
Server i5)

-t

@ (5

Web App (2a}

Other Web <A
Apps C3s

Images
"l:T Pages

— (3]

{1}—

Browser

(5)-»

(6)

Communication Gets Expensive

Communication J\ Commumnication
fH paths with two { p.i:lu with Hm
pmgrninm
: Comnumication Commundoaion
- pethe with four pails ¥kh fve
PRy raEnmeers mrﬁ;mm
|

Process

* Goal: Deliver an agreed upon working piece of
software to the customer at an agreed upon
time.

e Observations:

— Bugs found earlier in the development process are
less costly to fix

— Different pieces of the system require different skillsets
— Communication is expensive

* Solution:
— Invest more earlier in the process to get it right

— Break problem into sub-systems and defer having
teams talk until needed

Learning from Mistakes

* Typical System — built quickly to meet pressing
need. No time to [...]. Just get it out.

* Typical Issues:
— Doesn’t scale

— Isn’t flexible enough
— Design is ugly

Process

e Goal: Deliver an agreed upon working piece of
software to the customer at an agreed upon time.
* Observations:

— Bugs found earlier in the development process are less
costly to fix

— Different pieces of the system require different skillsets
— Communication is expensive

— Large amount of time is spent to retrofit systems for
scalability, flexibility and poorly designed

e Solution:
— Invest more earlier in the process to get it right

— Break problem into sub-systems and defer having teams
talk until needed

— Design scalability, flexibility, security, testability, etc. into
the system up-front

My First Intern’s Project

* Goal: system to kill the buy box on an item in real time

* Schedule (12 week internship):
— Ramp up (2 weeks)
— Build Database (2 weeks)
— Build Service (3 weeks)
— Build Ul (3 weeks)
— Integrate and Test (2 weeks)

* What really happens:

— Things took more time

— By the end of the internship — everything was “done”— but
still need to integrate and Test

Vicious Cycle

Del I L. l_lni:El"liﬂlnt"’

on hitting the

release
target
S T
{ N/
.-{..f"'\,‘ \

- Add more \

\/ \

A

nﬁemw&

hit the tarpet

Delivering Value

* Value is judged by Customers when they try
out the product

 We are likely building the wrong product
* Everything Changes

Summary: No one can predict the future

Process

e Goal: Deliver an agreed upon working piece of software to the
customer at an agreed upon time.

* QObservations:
— Bugs found earlier in the development process are less costly to fix
— Different pieces of the system require different skillsets
— Communication is expensive

— Large amount of time is spent to retrofit systems for scalability, flexibility
and poorly designed

— Integration is non-trivial
— No one can predict the future

e Solution:
— Invest more earlier in the process to get it right

— Break problem into sub-systems and defer having teams talk until
needed

— Design scalability, flexibility, security, testability, etc. into the system up-
front
— ?727?

Modified Solution
o i -~

» Deliver value to the customer as early as possible
. L .
IB' EE.'IE |a||elalen| Hte Illnelep.elnelenlt |a||eees Fhe-gerel
» Invest in cross functional teams that can execute
on all levels of the stack

» Accept that these are “problems from success”

» Invest to make retrofitting as cheap as possible —
Quality

Modified Goal

Dol | " . :
software-to-the-customeratanagreed-upon
Hme

* Deliver Value to Customers as quickly as
possible

Keeping software quality high

Code in repository is “ready-to-deploy” all-the-time
Constantly write new tests and modify tests to adapt.
Estimated test and refactor tax: 50% of dev time

Major production issues always have a post-mortem:
— Always ask — could we have caught this in test?

— Tests are written

— Monitoring is updated

Dedicated people to work on defects
nterrupt stories if we have a bad quality week

nfrastructure projects are scheduled with other
stories

In Practice — My Teams

Minimize formal specs

Deliver often

Customer focus

Minimize Work-in-progress

Lots of experimentation

Keep the code clean and well tested

Case Study

amazon

'7fresh |

and much more!

Amazon Fresh Picking Rewrite

* Goal: Improve Efficiency of Picking
* Requirements going in:
— Gather weight and dimension data for all items
— Virtually pack items into totes
— Weigh the tote to check for picking errors
— Scan check picking supplies (e.g., ice packs)

What did we do?

* Gather weight and dimension data for all items —
Yes

* Virtually pack items into totes - Yes — but...
* Weigh the tote to check for picking errors - No
* Scan check picking supplies (e.g., ice packs) - No

Summary

Deliver Often

Limit Work-in-Progress

Stay in touch with your customers
Keep Code Clean and Testable

Open Question

» Testing/Verification — can we make it much
easier and more natural?

— Proof systems are a start but it’s still hard to
specify

— Nothing “nags” at you — it’s too easy not to do
— |t still takes too much discipline and “try harder”

T'I'ﬂdi‘ﬁﬂhdl '“f‘_'ﬁr"ﬁ'f'“ late Unexpected behaviors
in project discovered very late

Components are developed separately.
Manager likes to <ay “complete each
component then move on”

Eve Ear Leg
dﬂl‘l.l I:[ﬂ'hE &ﬂhl

|||

Simple end-to-end Each component radually
functionality is achieved richer features ﬁf&hﬂ.ﬁur
at an early stage High confidence in product
from an early stage

from: http://msdn.microsoft.com/en-us/library/jj159336.aspx

Questions?

Contact: dennisl@amazon.com

