
Building Software Large and

Small

Notes from the Field

Dennis Lee

About Me

• Grew up in Philippines

• Cornell University – 1992

• University of Washington – 1999

• Amazon.com – 1999-2006/

2008-now

• Marchex – 2006-2008

• In China – 2010 – 2013

• Kindle Bookstore - today

2

My experience at Amazon

• Supply Chain systems (2.5 years)

• Website Merchandising (1.5 years)

• Website Operations (2 years)

• Grocery Delivery Logistics (1.5 years)

• Amazon China Website (3 years)

• Kindle (current)

3

Software Design Process Fails

Theory vs. Practice
• Theory –

– Agile – incremental delivery, people over process

– Waterfall = BAD

• Practice

– Multi-year projects, Gantt charts, “sprints”,

unhappy customers --- effectively waterfall

• Why?

Goal of Software Process

• Deliver an agreed upon working piece of

software to the customer at an agreed upon

time.

Relative Cost of Bug Fixes

Process

• Goal: Deliver an agreed upon working piece of

software to the customer at an agreed upon

time.

• Observations:

– Bugs found earlier in the development process are

less costly to fix

• Solution:

– Invest more earlier in the process to get it right

Communication Gets Expensive

Process
• Goal: Deliver an agreed upon working piece of

software to the customer at an agreed upon
time.

• Observations:

– Bugs found earlier in the development process are
less costly to fix

– Different pieces of the system require different skillsets

– Communication is expensive

• Solution:

– Invest more earlier in the process to get it right

– Break problem into sub-systems and defer having

teams talk until needed

Learning from Mistakes

• Typical System – built quickly to meet pressing

need. No time to […]. Just get it out.

• Typical Issues:

– Doesn’t scale

– Isn’t flexible enough

– Design is ugly

Process
• Goal: Deliver an agreed upon working piece of

software to the customer at an agreed upon time.

• Observations:
– Bugs found earlier in the development process are less

costly to fix

– Different pieces of the system require different skillsets

– Communication is expensive

– Large amount of time is spent to retrofit systems for
scalability, flexibility and poorly designed

• Solution:
– Invest more earlier in the process to get it right

– Break problem into sub-systems and defer having teams
talk until needed

– Design scalability, flexibility, security, testability, etc. into
the system up-front

My First Intern’s Project

• Goal: system to kill the buy box on an item in real time

• Schedule (12 week internship):

– Ramp up (2 weeks)

– Build Database (2 weeks)

– Build Service (3 weeks)

– Build UI (3 weeks)

– Integrate and Test (2 weeks)

• What really happens:

– Things took more time

– By the end of the internship – everything was “done”– but
still need to integrate and Test

Vicious Cycle

Delivering Value

• Value is judged by Customers when they try

out the product

• We are likely building the wrong product

• Everything Changes

Summary: No one can predict the future

Process
• Goal: Deliver an agreed upon working piece of software to the

customer at an agreed upon time.

• Observations:
– Bugs found earlier in the development process are less costly to fix

– Different pieces of the system require different skillsets

– Communication is expensive

– Large amount of time is spent to retrofit systems for scalability, flexibility
and poorly designed

– Integration is non-trivial

– No one can predict the future

• Solution:
– Invest more earlier in the process to get it right

– Break problem into sub-systems and defer having teams talk until
needed

– Design scalability, flexibility, security, testability, etc. into the system up-
front

– ????

Modified Solution

• Invest more earlier in the process to get it right

�Deliver value to the customer as early as possible

• Break problem into independent pieces and defer
having the teams talk until needed

�Invest in cross functional teams that can execute

on all levels of the stack

• Design scalability, flexibility, security, maintainability,
testability, etc. into the system up-front

�Accept that these are “problems from success”

�Invest to make retrofitting as cheap as possible –

Quality

Modified Goal

• Deliver an agreed upon working piece of

software to the customer at an agreed upon

time

• Deliver Value to Customers as quickly as

possible

Keeping software quality high

• Code in repository is “ready-to-deploy” all-the-time

• Constantly write new tests and modify tests to adapt.

• Estimated test and refactor tax: 50% of dev time

• Major production issues always have a post-mortem:
– Always ask – could we have caught this in test?

– Tests are written

– Monitoring is updated

• Dedicated people to work on defects

• Interrupt stories if we have a bad quality week

• Infrastructure projects are scheduled with other
stories

In Practice – My Teams

• Minimize formal specs

• Deliver often

• Customer focus

• Minimize Work-in-progress

• Lots of experimentation

• Keep the code clean and well tested

Case Study

Amazon Fresh Picking Rewrite

• Goal: Improve Efficiency of Picking

• Requirements going in:

– Gather weight and dimension data for all items

– Virtually pack items into totes

– Weigh the tote to check for picking errors

– Scan check picking supplies (e.g., ice packs)

What did we do?

• Gather weight and dimension data for all items –

Yes

• Virtually pack items into totes - Yes – but…

• Weigh the tote to check for picking errors - No

• Scan check picking supplies (e.g., ice packs) - No

Summary

• Deliver Often

• Limit Work-in-Progress

• Stay in touch with your customers

• Keep Code Clean and Testable

Open Question

• Testing/Verification – can we make it much

easier and more natural?

– Proof systems are a start but it’s still hard to

specify

– Nothing “nags” at you – it’s too easy not to do

– It still takes too much discipline and “try harder”

Closing Thought

from: http://msdn.microsoft.com/en-us/library/jj159336.aspx

Questions?

Contact: dennisl@amazon.com

