

CS403 Guest Lecture
Static Analysis
Eric Lippert

Introduction

• Who is this guy? What does he do? Why is he here?

• Let's play Spot the Defect!

• How can we automate defect spotting?

• Improving the Joel Test

Who is this guy?

• Compiler developer / language designer at Microsoft from
1996 through 2012

• Visual Basic, VBScript, JScript, VS Tools for Office, C♯ / Roslyn

• C# analysis architect at Coverity since January 2013

• I will use “we” inconsistently

• I have no formal background in static analysis

• I take an engineering rather than academic approach

About Coverity

• Founded in 2003

• Spun off of a Stanford Ph.D. research project

• We do static analysis of C/C++, C♯ and Java codebases looking for
quality and security defects

• ~3 × 102 employees

• ~ 1.2 × 103 customers

• Consumer electronics, telecommunications, software, aerospace,
medical devices…

• ~ 5 × 109 lines of code regularly scanned

• Development offices in San Francisco, Calgary and Seattle

• Growing quickly

• Purchased by Synopsys about five minutes ago

static static static static intintintint M(string M(string M(string M(string ssss, , , , intintintint x, x, x, x, intintintint y) y) y) y)
{{{{
intintintint z = 0z = 0z = 0z = 0;;;;
if (s if (s if (s if (s != != != != null && x null && x null && x null && x < < < < y y y y || || || || s.Lengths.Lengths.Lengths.Length > > > > 0)0)0)0)
z z z z = x + y = x + y = x + y = x + y –––– s.Lengths.Lengths.Lengths.Length;;;;

return return return return zzzz;;;;
}}}}

Spot the defect, round one (C#)

static static static static intintintint M(string s, M(string s, M(string s, M(string s, intintintint x, x, x, x, intintintint y) y) y) y)
{{{{
intintintint z = 0;z = 0;z = 0;z = 0;
if (if (if (if (s != s != s != s != null &&null &&null &&null && x < y || x < y || x < y || x < y || s.Lengths.Lengths.Lengths.Length > 0)> 0)> 0)> 0)
z = x + y z = x + y z = x + y z = x + y –––– ssss.Length.Length.Length.Length;;;;

return z;return z;return z;return z;
}}}}

Spot the defect, round one (C#)

&& is of higher precedence than ||.

If the null check results in false then the right side of the || executes, and asks
for the length of a null string, which throws.

The || could be parenthesized, but frankly this code looks like it ought to be
rewritten to make the intention more clear in the first place.

Coverity’s static analyzer determines that there is a control flow path in which a
known-to-be-null value of reference type is dereferenced.

Life is terrible

• C was designed for a world of slow machines with tiny memory
and was a massive improvement over assembly.

• We don't live in that world anymore, but we still use C.

• Even modern type-safe, memory-safe languages like C# and
Java permit the developer to write horrid bugs.

• No one has made a pragmatic language yet that prevents mistakes.

• Cost of fixing a defect rises exponentially:

• Fixed while typing code in: ~$1

• Fixed after developer testing ~$10

• Fixed after unit testing: ~$100

• Fixed after integration testing: ~$1000

• Fixed after shipping: arbitrarily expensive

• We can use software to mitigate the disasters caused by software

Enter static analysis

• Static analysis is any analysis of a program based solely on its
source code or object code

• dynamic analysis examines code as it is executing

• Compilers are static analyzers

• Compiler errors tell you when your program is illegal, not buggy.

• Compiler warnings tell you about potential bugs...

• ... but are typically a fast, shallow analysis

• Many static analyzers exist for many reasons

• Bug finding

• Refactoring

• Documentation

• Software metrics

• And so on

Jargon

• True positive: a report of a genuine flaw

• True negative: a non-report of a non-flaw

• False positive: a report of a non-flaw

• False negative: a non-report of a flaw

• Sound analysis: no false positives or negatives...

• ... is impossible

• Our goal is not to find all defects or even most defects

• "Thank goodness we found that before our customers did!"

• How do we do this in practice?

First, determine what code to analyze

• Bad: make the customer say what they want to analyze

• Good: figure it out by watching a build

• You run a clean build of whatever you want analyzed using
the build capture tool to launch the build

• The tool registers itself as a debugger and/or profiler of the
build process

• Invocations of compilers are detected and logged to a
temporary directory

• Now we know everything about the build.

• Capture of centralized nightly build is common, but not the
only possible workflow.

Second, find the defects

• Run all the source code through our own C / C++ / C#
/ Java compiler front end, as appropriate
• Abstract syntax trees and source code persisted into a

temporary directory

while

!=

b 0

if

while (b != 0)
if (a > b)

a -= b;
else

b -= a;

>

a b

-=

a b

-=

b a

Compute call graph, topo-sort it

Summarize the callees

• Now that we have an acyclic interprocedural call graph we
traverse the graph from leaves (callees) to roots (callers)

• As we traverse the graph each method is summarized.

• "M(string x) dereferences its argument"

• "OpenFile() returns a newly-allocated Stream object"

• "Foo() uses value equality on an object of type Bar five times"

• And so on.

• Method calls can be treated as though they had the actions
described in their summaries

• Now we have enough information to find defects

Analyze each method body

• "Checkers" are FSMs whose input is a sequence of AST
nodes, either in syntactic order or path order.

• Always run cheap path-insensitive analysis first

• There can be thousands of paths through a method

• Anything that makes analysis cheaper is goodness

• If any potential defect is found the method is analyzed
again, this time with intraprocedural path-sensitivity

• False-path-pruning algorithms ensure defects found
only on impossible paths are suppressed.

• The vast majority of lines of code are not defective

• One defect per KLOC is typical

False path pruning

• Defects found on "impossible" paths are likely false
positives (and make us look dumb)

• We use many techniques to determine if a defect is on a
false path.

• Integer interval inequality

• Nullity tracking

• SAT / SMT solving

• Many secret proprietary heuristic techniques

• Coming soon: collection invariants

Third, present the defects

• Finding defects is hard

• Presenting defects so that the developer understands them
well enough to fix them is even harder

• It is easy for skeptical, overworked, defensive developers to assume
a convoluted series of events that leads to a defect is impossible

• But before we get into that...

Spot the defect, round 2 (C#)

bool linkToDatabase =
(attr != null && attr.i_database == null) ?
true :
!isMigrating;

if (linkToDatabase)
{
Db4oDatabase db = container.Identity();
if (db == null)
{
attr = null;

}
else if (attr.i_database == null)
{

Forward-Null: ~800 / MLOC

Improving the Joel Test

• You recently learned about my buddy Joel's famous 12
point test: do you have source control, easy builds, daily
builds, bug tracking, aggressive bug fixing, schedules,
specifications, quiet offices, software tools, testers,
technical interviews, ad hoc usability testing?

• That "the best tools money can buy" item is a little vague.

• Source control and bug tracking are tools but so important
that they are called out as individual items.

• I want:

13. Do you use static analysis tools to find bugs
during the development process?

Spot the defect, round three (C#)

private int InternalCopyID(
bool flipNegative, bool lenient, int id)

{
if (flipNegative && id < 0)
{

id = -id;
}
int mapped = _mapping.MappedID(id, lenient);
if (flipNegative && id < 0)
{

mapped = -mapped;
}
return mapped;

}

Dead code -- ~60 / MLOC

Special thanks to Scott at BasicInstructions.net

Summing up

• Even good languages make it too easy to write bugs

• Bugs are easy to cause and hard to find, even for experts

• The earlier you find the bug, the cheaper it is to fix

• Static analysis tools do a lexical, grammatical, semantic,
interprocedural control flow and intraprocedural control
flow analysis to find specific defect patterns...

• ... and many heuristics to eliminate false positives

• Writing good defect presentations is a hard problem

• Use of static analysis tools is growing in industry, but are
not yet considered must-haves

• The stuff you're learning is actually useful!

More information

• Learn about Coverity at www.Coverity.com

• Read “A Few Billion Lines Of Code Later”

• Find me on Twitter at @ericlippert

• Or read my C♯ blog at www.EricLippert.com

• Or ask me about C♯ at www.StackOverflow.com

Copyright 2014 Coverity, Inc.

Bonus: Round four, time permitting

if (defaultValue > maxValue)
_defaultValue = maxValue;

else if (defaultValue < minValue)
_defaultValue = minValue;

else
_defaultValue = defaultValue;

if (value > maxValue)
_value = maxValue;

else if (defaultValue < minValue)
_value = minValue;

else
_value = value;

Copy/paste error -- ~8 / MLOC

