
Design Patterns in the Wild
Events

Dispatchers
MVC

Frameworks
Dependencies

Delegates
Architecture

Concepts
• Event-driven programming

• Model-view-controller

• Library vs. framework

• Dependency management

• Delegation Patterns

User input as interrupts
Writing interruptible programs is hard!

main()	
 {	

	
 	
 while	
 (true)	

	
 	
 	
 	
 DRAW_ON_SCREEN(game_state)	

}

[user@host]#	
 ./start-­‐program

interrupts

Why do it this way?

User input as a file
To the program, you are a file to be read.

main()	
 {	

	
 	
 while	
 (line	
 =	
 read(STDIN))	

	
 	
 	
 	
 process_input(line)	

}

[user@host]#	
 ./start-­‐program

STDIN

Why do it this way?

User input as events
Usually refers to event queue-driven programs.

main()	
 {	

	
 	
 EventQueue	
 queue;	

	
 	
 while	
 (queue.isOpen())	

	
 	
 	
 	
 process_event(queue.pop())	

}

[user@host]#	
 ./start-­‐program

Event	
 Queue

OS

‘h’ ‘e’ ‘l’ ‘l’ ‘o’

Event queue: provided by OS or framework; serializes event order.
How does the OS decide what app’s event queue to use?
What does process_event do?

Event-driven programming
Usually refers to event queue-driven programs.

Event	
 Queue

OS

‘h’ ‘e’ ‘l’ ‘l’ ‘o’

key:	
 […],	

mouse:	
 […],	

focus:	
 […]

run_shortcut()

take_focus()

insert_char()

Handlers Dispatcher

How does the OS decide what event queue to use?
Many different models for event dispatching (iOS responders, DOM events, …)
Used for GUI and non-GUI applications

Event dispatching (Cocoa)
Two-phase dispatch:

0. hit-test for NSView  
1. try first responder 
2. try hit-tested view, then
go up responder chain

Supports pre-emption by
first responder and
fallback handling by
responder chain

Event dispatching (DOM)
Three-phase dispatch:

0. hit-test for DOM node  
1. from root to target 
2. hit the target  
3. from target to root

Supports pre-emption
and fallback handling by
parent elements

GUI Architecture

How would you structure the code?

http://todomvc.com/architecture-examples/emberjs/

Classes:!

TextInput

Checkbox

Button

Filter?

TodoList?

TodoItem?

TodoApp?

How do the classes relate to each other?

http://todomvc.com/architecture-examples/emberjs/

Model-View-Controller
Every class is a Model, View, or Controller.

• Model: stores data and manages inter-object relationships

• View: what’s displayed; how the user sees and interacts

• Controller: interprets user actions, updates models and views

TextInput
Checkbox 

Button  
TextLabel  
 ListView  

ListItemView

ListController 
ItemController

TodoItem 
TodoList

Delegate!
checkboxClicked()

Event!
click

Method Call!
setCompleted()

Dispatch Event!
itemChanged

TextInput 
Checkbox 

Button  
TextLabel  
ListView  

ListItemView

ListController 
ItemController

TodoItem 
TodoList

Method Call!
setChecked(true)	

addClass(‘.done’) Event!

itemChanged

Dispatch Event!
itemChanged

MVC variations

• “View controller”: owns and manages views 
(back-forward history, filter/scroll state, focusing)

• “Model controller”: owns and manages models 
(undo/redo, import/export/create)

• Data binding: 1-way and 2-way model/view update  
(less boilerplate wiring of models and views)

Library vs. Framework

Sound OpenGL Physics Models Views Routes

Web Application 
FrameworkVideo Game

Discuss with people around you: what frameworks and libraries are you using? what has been helpful and what has been a pain?

Library vs. Framework
Goals of libraries: 
selective code reuse, 
specialize in a few capabilities, 
maximum versatility, 
backwards compatibility

Drawbacks of libraries: 
requires more architecture,  
good documentation is rare,  
partially solves problems 
 

Goals of frameworks: 
code and architecture reuse, 
minimize boilerplate code,  
maximize productivity, 
community knowledge

Drawbacks of frameworks: 
architecture lock-in, 
magical minimal code,  
steep learning curve, 
inherent complexity 

Satisfying Dependencies
Direct instantiation 
A component can create the dependency, typically using
the constructor of a hardcoded class name.

Service locators 
A component can look up the dependency in a global,
singleton registry of components.

Dependency Injection 
The component can have the dependency passed to it
where it is needed (by constructor argument, or setter) 

Dependency Examples

//	
 Caller	
 figures	
 out	
 which	
 instance	
 to	
 supply.	

TextEditor::TextEditor(Linebreaker*	
 linebreaker)	
 {	

	
 m_linebreaker	
 =	
 linebreaker;	

}

Dependency Injection

TextEditor::TextEditor()	
 {	

	
 m_linebreaker	
 =	
 new	
 EnglishLinebreaker();	

}

Direct Instantiation

TextEditor::TextEditor()	
 {	

	
 m_linebreaker	
 =	
 Registry::instance()	

	
 	
 	
 	
 	
 	
 	
 .lookupComponent(Linebreaker::InterfaceID());	

}

Service Locator

The details of how instances are supplied varies widely. 
Generally its handled by configuration files and a loader/DI framework.

Why dependency injection?  
Loose coupling.

• It makes it easier to test components separately.

• Strictly enforces “programming to the interface”.

• Avoids “abstract factory” and similar patterns.

• Supports lazy loading of specific implementations.

Delegation patterns

Who decides what clicking that button does?

What if I haven’t saved my work?

Delegation patterns
Subclassing 
Statically decide who
delegates what, using abstract
methods on a base class or
interface."

Delegates 
Statically enforce interface
contract, but dynamically
swap out who provides it.

Events 
Dynamically decide who
responds to a message.  

Architecture in the Wild 
aosabook.org

http://aosabook.org

Self-describing data types 
COM, XPCOM, and the like

Interface	
 IUnknown	
 { 
	
 	
 	
 	
 abstract	
 bool	
 QueryInterface(classid);  
	
 	
 	
 	
 void	
 addRef(); 
	
 	
 	
 	
 void	
 removeRef(); 
}	

void	
 makeRequest(IUnknown	
 o)	
 { 
	
 	
 	
 	
 if	
 (!o.QueryInterface(INetwork)) 
	
 	
 	
 	
 	
 	
 	
 	
 return; 
	
 	
 	
 	
 o.addRef(); 
	
 	
 	
 	
 network	
 =	
 (INetwork)o; 
	
 	
 	
 	
 network.doStuff(); 
	
 	
 	
 	
 o.removeRef(); 
}

• Components do not assume
anything about components.

• Everything is manually
reference-counted.

• Interfaces support language-
independent interoperability.

• Analogs in other ecosystems
(ObjC, Ruby, Python)

