
Git for Version Control

These slides are heavily based on slides created
by Ruth Anderson for CSE 390a.  Thanks, Ruth!

images taken from http://git-scm.com/book/en/

http://www.cs.washington.edu/403/
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About Git

• Created by Linus Torvalds,
creator of Linux, in 2005

– Came out of Linux development community 

– Designed to do version control on Linux kernel

• Goals of Git:

– Speed

– Support for non-linear development
(thousands of parallel branches)

– Fully distributed

– Able to handle large projects efficiently

– (A "git" is a cranky old man.  Linus meant himself.)
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Installing/learning Git

• Git website: http://git-scm.com/

– Free on-line book: http://git-scm.com/book

– Reference page for Git: http://gitref.org/index.html

– Git tutorial: http://schacon.github.com/git/gittutorial.html

– Git for Computer Scientists:

• http://eagain.net/articles/git-for-computer-scientists/

• At command line: (where verb = config, add, commit, etc.)
– git help verb
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Centralized VCS

• In Subversion, CVS, Perforce, etc.
A central server repository (repo)
holds the "official copy" of the code

– the server maintains the sole
version history of the repo

• You make "checkouts" of it
to your local copy

– you make local modifications

– your changes are not versioned

• When you're done, you
"check in" back to the server

– your checkin increments the repo's version
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Distributed VCS (Git)

• In git, mercurial, etc., you don't "checkout"
from a central repo

– you "clone" it and "pull" changes from it

• Your local repo is a complete copy
of everything on the remote server

– yours is "just as good" as theirs

• Many operations are local:

– check in/out from local repo

– commit changes to local repo

– local repo keeps version history

• When you're ready, you can "push" changes back to server
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Git snapshots

• Centralized VCS like Subversion
track version data on each
individual file.

• Git keeps "snapshots" of the
entire state of the project.

– Each checkin version of the
overall code has a copy of
each file in it.

– Some files change on a given
checkin, some do not.

– More redundancy, but faster.

Subversion

Git
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Local git areas

• In your local copy on git,
files can be:

– In your local repo

• (committed)

– Checked out and modified,
but not yet committed

• (working copy)

– Or, in-between, in
a "staging" area

• Staged files are ready
to be committed.

• A commit saves a snapshot of all staged state.

Unmodified/modified
Files

Staged
Files

Committed
Files



8

Basic Git workflow

• Modify files in your working directory.

• Stage files, adding snapshots of them to your staging area.

• Commit, which takes the files in the staging area and stores 
that snapshot permanently to your Git directory.
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Git commit checksums

• In Subversion each modification to the central repo increments 
the version # of the overall repo.

– In Git, each user has their own copy of the repo, and commits 
changes to their local copy of the repo before pushing to the 
central server.

– So Git generates a unique SHA-1 hash (40 character string 
of hex digits) for every commit.

– Refers to commits by this ID rather than a version number.

– Often we only see the first 7 characters:

•1677b2d Edited first line of readme

•258efa7 Added line to readme

•0e52da7 Initial commit
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Initial Git configuration

• Set the name and email for Git to use when you commit:

– git config --global user.name "Bugs Bunny"

– git config --global user.email bugs@gmail.com

– You can call git config –list to verify these are set.

• Set the editor that is used for writing commit messages:

– git config --global core.editor nano

• (it is vim by default)
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Creating a Git repo

Two common scenarios: (only do one of these)

• To create a new local Git repo in your current directory:

– git init

• This will create a .git directory in your current directory.

• Then you can commit files in that directory into the repo.

– git add filename

– git commit –m "commit message"

• To clone a remote repo to your current directory:

– git clone url localDirectoryName

• This will create the given local directory, containing a working copy of 
the files from the repo, and a .git directory (used to hold the 

staging area and your actual local repo)
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Git commands

shows diff of what is staged and what is 
modified but unstaged

git diff

command description

git clone url [dir] copy a Git repository so you can add to it

git add file adds file contents to the staging area

git commit records a snapshot of the staging area

git status view the status of your files in the working 
directory and staging area

git help [command] get help info about a particular command

git pull fetch from a remote repo and try to merge 
into the current branch

git push push your new branches and data to a remote 
repository

others: init, reset, branch, checkout, merge, log, tag
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Add and commit a file

• The first time we ask a file to be tracked, and every time 
before we commit a file, we must add it to the staging area:
– git add Hello.java Goodbye.java

• Takes a snapshot of these files, adds them to the staging area.

• In older VCS, "add" means "start tracking this file."  In Git, "add" 
means "add to staging area" so it will be part of the next commit.

• To move staged changes into the repo, we commit:

– git commit –m "Fixing bug #22"

• To undo changes on a file before you have committed it:

– git reset HEAD -- filename (unstages the file)

– git checkout -- filename (undoes your changes)

– All these commands are acting on your local version of repo.
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Viewing/undoing changes

• To view status of files in working directory and staging area:

– git status or git status –s (short version)

• To see what is modified but unstaged:

– git diff

• To see a list of staged changes:

– git diff --cached

• To see a log of all changes in your local repo:

– git log or git log --oneline (shorter version)
1677b2d Edited first line of readme

258efa7 Added line to readme

0e52da7 Initial commit

•git log -5 (to show only the 5 most recent updates), etc.
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An example workflow

[rea@attu1 superstar]$ emacs rea.txt

[rea@attu1 superstar]$ git status

no changes added to commit

(use "git add" and/or "git commit -a")

[rea@attu1 superstar]$ git status -s

M rea.txt

[rea@attu1 superstar]$ git diff

diff --git a/rea.txt b/rea.txt

[rea@attu1 superstar]$ git add rea.txt

[rea@attu1 superstar]$ git status

#       modified:   rea.txt

[rea@attu1 superstar]$ git diff --cached

diff --git a/rea.txt b/rea.txt

[rea@attu1 superstar]$ git commit -m "Created new text file"
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Branching and merging

Git uses branching heavily to switch between multiple tasks.

• To create a new local branch:

– git branch name

• To list all local branches: (* = current branch)

– git branch

• To switch to a given local branch:

– git checkout branchname

• To merge changes from a branch into the local master:

– git checkout master

– git merge branchname
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Merge conflicts

• The conflicting file will contain <<< and >>> sections to 

indicate where Git was unable to resolve a conflict:

<<<<<<< HEAD:index.html

<div id="footer">todo: message here</div>

=======

<div id="footer">

thanks for visiting our site

</div>

>>>>>>> SpecialBranch:index.html

• Find all such sections, and edit them to the proper state 
(whichever of the two versions is newer / better / more 
correct).

branch 1's version

branch 2's version
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Interaction w/ remote repo

• Push your local changes to the remote repo.

• Pull from remote repo to get most recent changes.

– (fix conflicts if necessary, add/commit them to your local repo)

• To fetch the most recent updates from the remote repo into 
your local repo, and put them into your working directory:

– git pull origin master

• To put your changes from your local repo in the remote repo:

– git push origin master
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GitHub

• GitHub.com is a site for online storage of Git repositories. 

– You can create a remote repo there and push code to it.

– Many open source projects use it, such as the Linux kernel. 

– You can get free space for open source projects,
or you can pay for private projects.

• Free private repos for educational use:  github.com/edu

• Question: Do I always have to use GitHub to use Git?

– Answer: No!  You can use Git locally for your own purposes.

– Or you or someone else could set up a server to share files.

– Or you could share a repo with users on the same file system, as
long everyone has the needed file permissions).


