
CSE 403
Lecture 27

Course Wrap-up Discussion

slides created by Marty Stepp

http://www.cs.washington.edu/403/

2

Requirements

• How does the product you built differ
from what you intended/expected to build?

– What are some features you had to cut?

– What are some implementation challenges you didn't anticipate?

– Did you end up implementing all of your original use cases as

planned? If not, what was cut/changed and why?

– What phases, features, aspects took longer to complete than you

thought? How does your initial estimation of your project's

schedule compare to what really took place?

3

Teams and groups

• What are some of the challenges that came
from working in a large team on a big project?

– What were the roles of your team's members?

• Did everyone work on individual tasks, or were there sub-groups?

– How did the PM manage and collaborate with others?

– What was the communication like between group members?

• Was it as good as it should have been?

– When, where, and how often did you meet in person to work?

– How did you resolve conflicts?

4

Tools and technologies

• While building this project, you had to learn about
new languages, tools, services, and technologies.

(Git/Github; Android; Heroku; testing tools; Jenkins)

– How difficult was this for you and for your group?

– What were some unforeseen challenges related to these

technologies that hit your group during the project?

– If you had to do a project like this again, would you choose the

same tools and technologies or switch, and why?

– Should we have done more to prepare you for using these tools?

5

Design

• This was (probably) your first time designing
such a large-scale team project.

– How difficult was it to come up with an initial design?

– Does your final code look anything like your UML?

– What design aspects were hard to anticipate, or

came out very differently from your initial idea?

– Was UML useful as a tool to talk about your design?

• What about related techniques like CRC cards?

– Do you feel like you could design a similar app well now?

6

GitHub, code reviews

• We forced you to use a central GitHub repo
and to do extensive code reviewing.

– Was it helpful to use a central Github repo?

– Did you feel like you knew Git/Github well?

• Do you feel like you know it well now?

– Did your group have any challenges related to the repo/Github?

– What were the pros and cons of doing the code reviews?

– How useful do you think code reviewing was on your project?

• Did you learn any coding skills or good/bad practices from it?

• Did it help your team to avoid any problems, bugs, bad code, etc.?

7

Testing

• We did a lot of unit testing, including coverage
analysis, and also integration/system testing.

– Did unit tests help you find any bugs or regressions?

– How hard was it to get to the expected coverage percentage?

– What kind(s) of testing were most interesting or useful?

• integration, UI, usability, performance, reliability, security, ...

– What kind of testing scheme would you use if a future large team

project were entirely under your control?

• Would you require unit testing? A minimum coverage?

• What kind(s) of system testing, if any, would you use and why?

8

Readings

• Throughout the quarter we read articles, chapters,
and sections about SW engineering topics.

– What topics were interesting to read about?

– What topics were tougher or less interesting?

– Is there a topic we didn't read about but should have?

– What do you think about the reading in the course overall?

• Would the course be better with less/different expectations?

9

Further reading

• Code Complete, by Steve McConnell

• The Pragmatic Programmer, by Andrew Hunt / David Thomas

• The Art of Unit Testing, by Roy Osherove

• Don't Make Me Think!, by Steve Krug (usability)

• How to Break [Web] Software, by James Whittaker (testing)

• The Mythical Man-Month, by Fred Brooks

• Programming Pearls, by Jon Bentley

• Refactoring, by Martin Fowler

• UML Distilled, by Martin Fowler

• Rapid Development, by Steve McConnell

• Design Patterns: Elements of Reusable ..., by "Gang of Four"

• Object-Oriented Design and Patterns, by Cay Horstmann

– web sites: Joel on Software; Paul Graham; Hacker News; reddit

10

Advice from past students

• Here is some advice given from students in past quarters:

– "Work together (in the same place) as much as possible."

– "Well-run and consistently scheduled meetings help a lot."

– "We often underestimated tasks. If we had spent more time
analyzing each task and breaking it down into smaller chunks,
our estimated times would have been more accurate."

– "Don't underestimate the difficulty of learning new languages,
frameworks and tools."

– "Make small, frequent updates and commits to your source
repo. Not doing this leads to merges that can be a nightmare."

• What advice do you have for future CSE 403 students?

