
CSE 403
Lecture 25

Scheduling and Planning a Large Project

Reading:

The Mythical Man-Month, Ch. 2, by F. Brooks

slides created by Marty Stepp

http://www.cs.washington.edu/403/

2

Revisited: Software is hard

• Historically, ~ 85% of software projects "fail." Why?
– management sets unrealistic expectations; devs don't correct them

– overestimating the positive impact of shiny new tools and hardware

– hired developers based on availability despite warning signs

– personality conflicts between developers

– changes in rate structure requirements in middle of work

– one delay causes another (dev delay leads to test delay, etc.)

– hacks and shortcuts

– developers end up working "death marches" (6-day, 10-hour weeks)

– overestimating how nearly done you are ("I'm 90% there!")

– software written doesn't match the spec

– developer time taken away by other tasks

– tons of bugs come out in testing

– developers don't listen to testers; ignore severity of bugs reported

– management breaking promises (bonuses, time off, etc.)

3

Why do projects fail?

• Fred Brooks: Turing Award-winning Harvard
professor; expert on software engineering.

– managed development of IBM System/360

– author of The Mythical Man-Month

• Brooks: "More programming projects have gone awry for lack
of calendar time than for all other causes combined."

• But why do projects finish late?

– How can we foresee/predict this happening?

– What (if anything) can we do about it?

4

A late software project

• In the graphs, the project was supposed to reach milestone A
in 1 month (left), but in fact it took 2 months (right).

– How should this delay be interpreted?

– What are the options facing the project's manager?

– Should the manager add extra people to the development team
to make up for the delay? If so, how many and why?

5

Interpretation #1

• Only Part A was misestimated.
So the overall project will be 1 month late. (at right)

– If the assumption is valid:

• 9 man-months of work remain

• / 2 actual months remain in which to do it

• = 4.5 people will need to work each month

• so add 2 workers to the existing 3.

6

Interpretation #2

• The whole project estimate was low.
So the project will take twice as long as expected. (at right)

– If the assumption is valid:

• 18 man-months of work remain

• / 2 actual months remain in which to do it

• = 9 people will need to work each month

• so add 6 workers to the existing 3.

7

The Mythical Man-Month

• If we assume the interpretation #1 was correct:

– We must account for delays in training the new workers

– We must partition the job into 5 pieces, to be integrated later

What is "Brooks' Law"?

– "Adding manpower to a late software project makes it later."
-- The Mythical Man-Month

8

Of Months and Men

• Men/women and months are not interchangeable!
When you add workers, the following costs occur:

– must repartition the work

– must train the new workers

– must increase intercommunication

• What is Brooks' suggested schedule?

– 1/3 for design

– 1/6 for coding

– 1/4 for unit/component testing

– 1/4 for system testing

9

LOC per day

• Pro developers often write 50-100 lines of code per day.

– How can it be so low?

– Does it change based on the programming language used?

• Factors to consider:

– Should say, 100 lines of correct code per day.

• Are we counting comments? Blank lines? Modified old lines?

– The code must be...

• designed

• tested

• code reviewed

• checked in

• maintained / updated

10

Productivity

• Factors that eat up developer time:

– learning new systems, languages, and code

– documentation

– testing

– debugging (getting stuck!)

– meetings

– interpersonal communication

– code reviews

– design reviews

– illness

– real life (family, pets, flat tire, etc.)

– distraction (Facebook, etc.)

11

Measuring productivity

• Ways LoC can be useful:

– when measured in the same language

– with the same developer

– over a long period of time

• Variations

– Include comments / blank lines in LoC?

• Other ways to measure productivity, besides LoC:

– LoC per month

– "function points"

– "eLoC" - substantive lines

– check-ins

12

Why is estimating hard?

Why are we so bad at estimating how long a project will take?

• Programmers are optimists: "All will go well."

– Programming = creative; building with "thought-stuff"

– therefore, we do not usually imagine that things will go wrong

• We lack practice at measuring how long tasks will take

– lose track of time while coding; forget how long it took

– tend to focus on the time needed to finish "rough" untested code

• We fail to account ahead of time for:

– bugs; sticking points (sometimes NO progress will be made)

– design / redesign / refactoring

– testing and debugging (both our code and others')

13

Some estimating tips

• Guess how long you think you'll actually need...

– Then double (or triple) it.

– Use a coarse granularity; days/weeks, not hours.

• Add time to your estimate if:

– It involves learning any new technologies or systems.

– It involves collaborating with others.

– It is user-facing and therefore needs to be very robust/secure.

– It is concurrent, network-enabled, or long-running.

– It involves "messy" data or combining data from multiple sources.

14

Your project schedules

• Looking back on your initial estimated project schedules:

– How accurate were your initial ideas?

– In what way are they the most
"off" from what you have actually
spent your time doing?

– Do you know something now that
would help you to more effectively
schedule a large project in the
future? If so, what?

15

Code maintenance

• maintenance: Modification or repair of a
software product after it has been delivered.

fix bugs, performance, improve design, add features

• Maintenance is how developers
spend much of their time.

• It's harder to maintain code than write your own new code.

– "house of cards" phenomenon (don't touch it!)

– must understand code written by another developer,
or code you wrote at a different time with a different mindset

– most developers dislike code maintenance...

16

Performing maintenance

• Maintenance comprises all phases of the software lifecycle.

– gather requirements

– design

– implement (code)

– test/debug

– integrate

– ...

• New versions of your software are subject to all constraints
that were placed on the old version, and possibly more.

– backwards compatibility is often expected / required

17

Maintenance + new devs

• It is often done as an afterthought.

– Not enough time allocated in schedule

– You must think ahead of time how you
(or someone) will maintain code later

• Maintenance is often given to junior developers.

– "This way they'll learn the guts of the system better."

– Senior developers don't want to work on maintenance.

– But junior devs don't know the system or how to maintain it.

• Result: brittle code with little conceptual or design integrity;
even more maintenance headaches to come.

