
CSE 403
Lecture 20

Security Testing for Mobile and Web
Apps

Reading:

Android Apps Security, Ch. 2-3 (Gunasekara)
How to Break Web Software, Ch. 2-5

(Andrews/Whittaker)

2

Android security risks

• What are some security risks you can think
of that can affect an Android phone?

– What are actions a malicious app could take?

• Examples:
– uses a bug or security vulnerability to gain ungranted permissions

– shows the user unsolicited messages (especially commercial)

– resists (or attempts to resist) the user's effort to uninstall it

– attempts to automatically spread itself to other devices

– hides its files and/or processes

– discloses the user's private information to a third party w/o consent

– destroys the user's data (or the device itself) without w/o consent

– impersonates the user (such as by sending email or buying things)

– drains the phone's battery, data bytes/minutes, SMS/MMS remaining

– otherwise degrades the user's experience with the device

3

Android OS security

• The Android operating system provides security:

– Unix-based file/directory permission model

– process memory isolation and memory protection

– filesystem encryption

– per-app access to hardware devices

– per-app restrictions on memory/CPU usage, other resources

• network/data connection

• camera

• location (GPS) data

• bluetooth

• SMS/MMS

• ...

– DRM framework

4

Mobile app permissions

• Apps must declare which permissions they need

– e.g. use internet; write to local files; look at contacts;
use Bluetooth; access GPS location; send SMS

– user must manually give permission for actions

• Fine-grained access control in Manifest XML file

– File/URL-specific permissions

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.android.app.myapp" >

<uses-permission android:name="android.permission.RECEIVE_SMS" />
...

</manifest>

5

Signed apps/stores

• signed apps: Coded with a private developer key

– On Android / iPhone, apps must be signed in market

– manual approval reduces chance of rogue apps

– any app bought in official App Store / Market is
generally thought of as having being audited

• Is this true for Apple store apps?

• Is this true for Google Play Market apps?

• App store users can rate the apps and comment

– Do you feel that an app is more likely to be secure:

• If it is from a publisher/company you already know?

• If a friend of yours has it installed?

• If it costs money?

6

Problems with Android

• Apps can ask for too many permissions.

– Users don't really understand permissions.

– Users are overwhelmed and just click "Yes"

– Now the app can do almost anything.

• Updates to an app can change its permissions.

– example: recent Facebook app update

– Users often click "Yes" if they already trust the app.

– "privilege escalation"

• Spammy apps

– resist attempts to uninstall

– show ads that are like system/OS UI

– disclose or damage the user's personal information data

7

Example attack

• Android 2.2 / 2.3 had vulnerabilities.

– Browser could download a HTML page.

– The page contains JS code.

– The JS code can self-execute later
in a "local" context.

– This has higher permissions and can
modify the local file system.

• App ABC stores sensitive data on the local file system.

– The data is financially important.

– It is saved as a file in plain-text.

– The above malicious browser JS code can read and access it.

Designing for security

9

Methods of security

• Security through obscurity: Relying on the fact that
attackers don't know something needed to harm you.

– Example: "If an attacker pointed their browser to
http://foo.com/passwords.txt, they'd get our passwords. But
nobody knows that file is there, so we are safe."

– Example: "Our app saves its sensitive user data using SQLite
which ends up as a file on the local file system."

– Example: "Our authentication database goes down for 2 minutes
every night at 4am. During that time any user can log in without
restrictions. But no one knows this, and the odds of a login at
that time are miniscule."

10

Secure authentication

• Force users to log in to your system before performing
sensitive operations

• Use secure protocols (https, etc.) to prevent sniffing

– Some sites use HTTPS only for login page, then switch back to
regular HTTP for future page views. Is this bad?

• Force users to use strong passwords

– not "password", or "abc", or same as their user name, etc.

11

Principle of least privilege

• principle of least privilege:
Granting just enough authority to get the job done (no more!).

– Examples:

• Code should not "run as root" or as a highly privileged user unless
absolutely necessary.

• A web server should only be given access to the set of HTML files that
the web server is supposed to serve.

– Turn off unnecessary services on your server

• disable SSH, VNC, sendmail, etc.

• close all ports except 80, and any
others needed for web traffic

12

Sanitizing inputs

• sanitizing inputs: Encoding and filtering untrusted user input
before accepting it into a trusted system.

– Ensure that accepted data is the right type, format, length...

– Disallow entry of bad data into a graphical form.

– Remove any SQL code from submitted user names.

– Encode/sanitize input text that is displayed back to the user.

13

Verifying that code is secure

• Before code is written:

– considering security in the design process

• As code is being written:

– code reviews

– code security audits

– pair programming

• After code has been written:

– walkthroughs

– system security audits

– system/functional security testing

– penetration tests

14

Security audits

• security audit: A series of checks and questions to assess the
security of your system.

– can be done by an internal or external auditor

– best if done as a process, not an individual event

• penetration test: Targeted white-hat attempt to compromise
your system's security.

• risk analysis: Assessment of relative risks of what can go
wrong when security is compromised.

15

Security audit questions

• Does your system require secure authentication with passwords?

• Are passwords difficult to crack?

• Are there access control lists (ACLs) in place on network devices?

• Are there audit logs to record who accesses data?

• Are the audit logs reviewed?

• Are your OS security settings up to accepted industry levels?

• Have all unnecessary applications and services been eliminated?

• Are all operating systems and applications patched to current levels?

• How is backup media stored? Who has access to it? Is it up-to-date?

• Is there a disaster recovery plan? Has it ever been rehearsed?

• Are there good cryptographic tools in place to govern data encryption?

• Have custom-built applications been written with security in mind?

• How have these custom applications been tested for security flaws?

• How are configuration and code changes documented at every level? How are these

records reviewed and who conducts the review?

16

Data classification

• data classification table: For each kind of data your app
saves/uses, ask yourself:

– Is this information personal or sensitive in nature?

– What does my app do with this information?

– Where and in what format is it saved?

– Is it sent over the network?

– (for all above) Does it need to be? Can I reduce my use?

17

Data storage location

• Where is your app storing its data, and why? Is it secure?

18

Encryption

• You can easily encrypt data in Android just before/after saving
it to the device's SD card or local database.

private static byte[] encrypt(byte[] key, byte[] data) {
SecretKeySpec sKeySpec = new SecretKeySpec(key, "AES");
Cipher cipher;

byte[] ciphertext = null;

try {

cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, sKeySpec);

ciphertext = cipher.doFinal(data);
} catch (NoSuchAlgorithmException e) {

Log.e(TAG, "NoSuchAlgorithmException");

} catch (InvalidKeyException e) {

Log.e(TAG, "InvalidKeyException");

} catch (Exception e) {

Log.e(TAG, "Exception");

}

return ciphertext;

}

19

Mobile+web apps

• OWASP Top 10 issues for mobile
apps that talk to web apps:

– Identify and protect sensitive data on the mobile device.

– Handle password credentials securely on the device.

– Ensure that sensitive data is protected in transit.

– Implement user authentication and session management correctly.

– Keep the back-end APIs (services) and the platform (server) secure.

– Perform data integration with third party services/apps securely.

– Pay specific attention to the collection and storage of consent for the
collection and use of the user’s data.

– Implement controls to prevent unauthorized access to paid-for
resources (e.g., wallet, SMS, and phone calls).

– Ensure secure distribution/provisioning of mobile applications.

– Carefully check any runtime interpretation of code for errors.

20

Secure web (HTTPS)

• man-in-the-middle attack:

– unauthorized third party
can hear web traffic
on its hops between
client and server

• For security, all web traffic
in your app should use
HTTPS secure protocol.

– built on Secure Socket Layer (SSL)

Web security

22

Denial-of-Service (DoS)

• Denial of Service (DoS) attack:
Attacker causes web server to be unavailable.

• How attack is performed:

– Attacker frequently requests many pages from your web site.

• distributed DoS (DDoS): DoS using lots of computers

– Your server cannot handle this many requests at a time, so it
turns into a smoldering pile of goo (or just becomes very slow).

• Problems that this attack can cause:

– Users cannot get to your site.

– Online store's server crashes -> store loses potential revenue.

– Server may crash and lose or corrupt important data.

– All the bandwidth used by the DoSers may cost you $$$.

23

Packet sniffing

• packet sniffing: Listening to traffic sent on a network.

– Many internet protocols (http, aim, email) are unsecure.

– If an attacker is on the same local network (LAN) as you, he can:

• read your email/IMs as you send them

• see what web sites you are viewing

• grab your password as it's being sent to the server

• solutions:

– Use secure protocols (ssh, https)

– Encryption

– Don't let creeps on your LAN/wifi

24

Password cracking

• password cracking:
Guessing the passwords of privileged users of your system.

• How attack is performed:

– brute force attack: Attacker uses software that sequentially
tries every possible password.

– dictionary attack: Attacker uses software that sequentially tries
passwords based on words in a dictionary.

• every word in the dictionary

• combinations of words, numbers, etc.

• What you can do about it:

– Force users to have secure passwords.

– Block an IP address from logging in after N failed attempts.

25

Phishing/social engineering

• phishing: Masqueraded mails or web sites.

– social engineering: Attempts to manipulate users, such as
fraudulently acquiring passwords or credit card numbers.

• Problems:

– If trusted users of your
system are tricked into
giving out their personal
information, attackers
can use this to log in as
those users and
compromise your system.

26

Privilege escalation

• privilege escalation: Attacker becomes able to run code on
your server as a privileged user.

– Example: Perhaps normal users aren't able to directly query your
database. But an attacker may find a flaw in your security letting
him run as an administrator and perform the query.

– Once you're running as root,
You own the server.
You can do anything you want!

27

Cross-site scripting (XSS)

• cross-site scripting: Causing one person's script code to be
executed when a user browses to another site.

– Example: Visit google.com, but evil.com's JavaScript runs.

• How attack is performed:

– Attacker finds unsecure code on target site.

– Attacker uses hole to inject JavaScript into the page.

– User visits page, sees malicious script code.

28

SQL Injection

• SQL injection:
Causing undesired SQL queries to be run on your database.

– Often caused when untrusted input is pasted into a SQL query

PHP: "SELECT * FROM Users WHERE name='$name';";

– specify a user name of: x' OR 'a'='a

SELECT * FROM Users WHERE name='x' OR 'a'='a';

Thinking like an attacker:
Finding vulnerabilities

30

Panning for gold

• View Source, and look for:

– HTML comments

– script code

– other sensitive information in code:
IP/email addresses, SQL queries, hidden fields,...

– watch HTTP requests/responses

• look for hidden pages, files, parameters to target

– error messages sent to your browser by app

• 200: OK 400: Invalid request

• 403: Forbidden 404: File not found

• 500: Internal server error

31

Input forms

• Forms let users pass parameters to the web server.

• Parameters are passed using GET or POST requests.

– GET: parameters are contained in the request URL.

http://www.google.com?q=Stephen+Colbert&lang=en

– POST: parameters are contained in the HTTP packet header.

• harder for the user to see, but no more secure than GET

• Forms provide a rich attack ground...

32

Form validation

• validation: Examining form parameters to make sure they are
acceptable before/as they are submitted.

– nonempty, alphabetical, numeric, length, ...

– client-side: HTML/JS checks values before request is sent.

– server-side: JSP/Ruby/PHP/etc. checks values received.

• Some validation is performed by restricting the user's choices.

– select boxes

– input text boxes with
maxlength attribute

– key event listeners that
erase certain key presses

33

User input attacks

• Bypassing client-side input restrictions and validation

– maxlength limits on an input text field

– choices not listed in a select box

– hidden input fields

– modifying or disabling client-side JavaScript validation code

34

Guessing files/directories

• security through obscurity: Many reachable files/resources
are hidden only by the fact that there is no link to them.

• Try common file/folder/commands to see what happens:

– /etc/passwd , /etc/shadow , cat, ls, grep

– guess file names based on others

• page11.php --> page12.php

• loginfailure.jsp --> loginsuccess.jsp

• accounts/fred.html --> accounts/sue.html

– brute force / web spiders

– port scanners

35

Other attacks

• Attacking GET parameters

• Attacking hidden input fields

• Attacking cookies

• Cross-site request forgery (CSRF)

• ...

36

Web attack exercise

• We are taking CSE 144, which uses an online turnin system.

– We want to hack it because we are evil.

• Our goals:

– We want to cheat on Homework Assignment 7, Song.java. We
want to find a way to submit a perfect working solution without
doing any real work.

– We got a low grade on a past assignment, so if possible, we want
to set our past grades to be higher than they are now.

– Our enemy is fellow classmate Felix Chu. We want to find out his
personal information (password, email, student ID, grade, etc.).

– We don't like the course instructor, Marty Stepp. We want to
make the turnin page print an embarrassing message about him.

