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Acceptance, performance

• acceptance testing: System is shown to the user / client / 
customer to make sure that it meets their needs.

– A form of black-box system testing

• Performance is important.

– Performance is a major aspect of program acceptance by users.

– Your intuition about what's slow is often wrong.
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What's wrong with this? (1)

public class BuildBigString {

public final static int REPS = 80000;

// Builds/returns a big, important string.

public static String makeString() {

String str = "";

for (int n = 0; n < REPS; n++) {

str += "more";

}

return str;

}

public static void main(String[] args) {

System.out.println(makeString());

}

}
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What's wrong with this? (2)

public class Fibonacci {

public static void main(String[] args) {

// print the first 10000 Fibonacci numbers

for (int i = 1; i <= 10000; i++) {

System.out.println(fib(i));

}

}

// pre: n >= 1

public static long fib(int n) {

if (n <= 2) {

return 1;

} else {

return fib(n - 2) + fib(n - 1);

}

}

}
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What's wrong with this? (3)

public class WordDictionary {

// The set of words in our game.

List<String> words = new ArrayList<String>();

public void add(String word) {

words.add(word.toLowerCase());

}

public boolean contains(String word) {

for (String s : words) {

if (s.toLowerCase().equals(word)) {

return true;

}

}

return false;

}

}
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What's wrong with this? (4)

public class BankManager {

public static void main(String[] args) {

Account[] a = Account.getAll();

for (int i = 0; i < Math.sqrt(895732); i++) {

a[i].loadTaxData();

if (a.meetsComplexTaxCode(2020)) {

a[i].fileTaxes(4 * 4096 * 17);

}

}

Account[] a2 = Account.getAll();

for (int i = 0; i < Math.sqrt(895732); i++) {

if (a.meetsComplexTaxCode(2020)) {

a2[i].setTaxRule(4 * 4096 * 17);

a2[i].save(new File(a2.getName()));

}

}   }   }



7

The correct answers

1. Who cares?

2. Who cares?

3. Who cares?

4. Who cares?

• "We should forget about small efficiencies, say about 97% of 
the time: premature optimization is the root of all evil." 

-- Donald Knuth

• "We follow two rules in the matter of optimization:

1. Don't do it.

2. (for experts only)  Don't do it yet."

-- M. A. Jackson 
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Thinking about performance

• The app is only too slow if it doesn't meet your project's
stated performance requirements.

– If it meets them, DON'T optimize it!

• Which is more important, fast code or correct code?

• What are reasonable performance requirements?

– What are the user's expectations?  How slow is "acceptable" for 
this portion of the application?

– How long do users wait for a web page to load?

– Some tasks (admin updates database) can take longer
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Optimization myths

• Myth: You should optimize your code as you write it.

– No; makes code ugly, possibly incorrect, and not always faster.

– Optimize later, only as needed.

• Myth: Having a fast program is as important as a correct one.

– If it doesn't work, it doesn't matter how fast it's running!

• Myth: Certain operations are inherently faster than others.

– x << 1 is faster to compute than x * 2 ?

– This depends on many factors, such as language used.
Don't write ugly code on the assumption that it will be faster.

• Myth: A program with fewer lines of code is faster.
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Perceived performance

• "My app feels too slow.  What should I do?"

– possibly optimize it

– And/or improve the app's perceived performance

• perceived performance: 
User's perception of your app's responsiveness. 

• factors affecting perceived performance:

– loading screens

– multi-threaded UIs (GUI doesn't stall while
something is happening in the background)
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Optimization metrics

• runtime / CPU usage

– what lines of code the program is spending the most time in

– what call/invocation paths were used to get to these lines

• naturally represented as tree structures

• memory usage

– what kinds of objects are on the heap

– where were they allocated

– who is pointing to them now

– "memory leaks" (does Java have these?)

• web page load times,
requests/minute, etc.
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Benchmarking, optimization

• benchmarking: Measuring the absolute performance of your 
app on a particular platform (coarse-grained measurement).

• optimization: Refactoring and enhancing to speed up code.

– I/O routines

• accessing the console (print statements)

• files, network access, database queries

•exec() / system calls

– Lazy evaluation saves you from computing/loading

• don't read / compute things until you need them

– Hashing, caching save you from reloading resources

• combine multiple database queries into one query

• save I/O / query results in memory for later
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Optimizing memory access

• Non-contiguous memory access (bad):

for (int col = 0; col < NUM_COLS; col++) {

for (int row = 0; row < NUM_ROWS; row++) {

table[row][column] = bulkyMethodCall();

}

}

• Contiguous memory access (good):

for (int row = 0; row < NUM_ROWS; row++) {

for (int col = 0; col < NUM_COLS; col++) {

table[row][column] = bulkyMethodCall();

}

}

– switches rows NUM_ROWS times, not NUM_ROWS * NUM_COLS
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Optimizing data structures

• Take advantage of hash-based data structures

– searching an ArrayList (contains, indexOf) is O(N)

– searching a HashMap/HashSet is O(1)

• Getting around limitations of hash data structures

– need to keep elements in sorted order? Use TreeMap/TreeSet

– need to keep elements in insertion order? Use LinkedHashSet
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Avoiding computations

• Stop computing when you know the answer:

found = false;

for (i = 0; i < reallyBigNumber; i++) {

if (inputs[i].isTheOneIWant()) {

found = true;

break;

}

}

• Hoist expensive loop-invariant code outside the loop:

double taxThreshold = reallySlowTaxFunction();

for (i = 0; i < reallyBigNumber; i++) {

accounts[i].applyTax(taxThreshold);

}
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Lookup tables

• Figuring out the number of days in a month:
if (m == 9 || m == 4 || m == 6 || m == 11) {

return 30;

} else if (month == 2) {

return 28;

} else {

return 31;

}

• Days in a month, using a lookup table:

DAYS_PER_MONTH = {-1, 31, 28, 31, 30, 31, 30, ..., 31};

...

return DAYS_PER_MONTH[month];

– Probably not worth the speedup with this particular example...
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Optimization is deceptive

int sum = 0;

for (int row = 0; row < NUM_ROWS; row++) {

for (int col = 0; col < NUM_COLS; col++) {

sum += matrix[row][column];

}

}

• Optimized code:
int sum = 0;

Cell* p = matrix;

Cell* end = &matrix[NUM_ROWS - 1][NUM_COLS - 1];

while (p != end) {

sum += *p++;

}

• Speed-up observed: NONE.

– Compiler was already optimizing the original into the second!
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Dynamic programming

public static boolean isPrime(int n) {

double sqrt = Math.sqrt(n);

for (int i = 2; i <= sqrt; i++)

if (n % i == 0) { return false; }

return true;

}

• dynamic programming: Caching previous results.

private static Map<Integer, Boolean> PRIME = ...;

public static boolean isPrime2(int n) {

if (!PRIME.containsKey(n))

PRIME.put(n, isPrime(n));

return PRIME.get(n);

}
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Optimization tips

• Pareto Principle, aka the "80-20 Rule"

– 80% of a program's execution occurs within 20% of its code.

– You can get 80% results with 20% of the work.

• "The best is the enemy of the good."

– You don't need to optimize all your app's code.

– Find the worst bottlenecks and fix them.  Leave the rest.
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Profiling

• profiling: Measuring relative system statistics (fine-grained).

– Where is the most time being spent? ("classical" profiling)

• Which method takes the most time?

• Which method is called the most?

– How is memory being used?

• What kind of objects are being created?

• This in especially applicable in OO, GCed environments.

– Profiling is not the same as benchmarking or optimizing.
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Types of profiling

• insertion: placing special profiling code into your program 

(manually or automatically)

– pros: can be used across a variety of platforms; accurate

– cons: requires recompiling; profiling code may affect performance

• sampling: monitoring CPU or VM at regular intervals and 

saving a snapshot of CPU and/or memory state

– pros: no modification of app is necessary

– cons: less accurate; varying sample interval leads to a 

time/accuracy trade-off; small methods may be missed; 

cannot easily monitor memory usage
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Android Traceview

• Traceview:

– http://developer.android.com/tools/debugging/debugging-tracing.html

– Debug class generates *.trace files to be viewed

• Debug.startMethodTracing();  ...  Debug.stopMethodTracing();

– timeline panel: describes when each thread/method start/stops

– profile panel: summary of what happened inside a method
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Android profiling DDMS

• Dalvik Debug Monitor Server (DDMS):

– http://developer.android.com/tools/debugging/ddms.html

• Eclipse:  Window → Open Perspective → Other... → DDMS

• console: run ddms from tools/ directory

– On Devices tab, select process that you want to profile

• Click Start Method Profiling

• Interact with application to run and profile its code.
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Java profiling tools

• Many free Java profiling/optimization tools available:

– TPTP profiler extension for Eclipse

– Extensible Java Profiler (EJP) - open source, CPU tracing only

– Eclipse Profiler plugin

– Java Memory Profiler (JMP)

– Mike's Java Profiler (MJP)

– JProbe Profiler - uses an instrumented VM

• hprof (java -Xrunhprof)

– comes with JDK from Sun, free

– good enough for anything I've ever needed
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Using hprof

usage: java -Xrunhprof:[help]|[<option>=<value>, ...]

Option Name and Value  Description                    Default

--------------------- ----------- -------

heap=dump|sites|all    heap profiling                 all

cpu=samples|times|old  CPU usage                      off

monitor=y|n            monitor contention             n

format=a|b             text(txt) or binary output     a

file=<file>            write data to file             off

depth=<size>           stack trace depth              4

interval=<ms>          sample interval in ms          10

cutoff=<value>         output cutoff point            0.0001

lineno=y|n             line number in traces?         Y

thread=y|n             thread in traces?              N

doe=y|n                dump on exit?                  Y

msa=y|n                Solaris micro state accounting n

force=y|n              force output to <file>         y

verbose=y|n            print messages about dumps     y
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Sample hprof usage

java -Xrunhprof:cpu=samples,depth=6,heap=sites

or
java -Xrunhprof:cpu=old,thread=y,depth=10,cutoff=0,format=a 

ClassName

– Takes samples of CPU execution

– Record call traces that include the last 6/10 levels on the stack

– Only record "sites" used on heap (to keep output file small)

java -Xrunhprof ClassName

– Takes samples of memory/object usage

• After execution, open the text file java.hprof.txt in the 

current directory with a text editor
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hprof visualization tools

• CPU samples

– critical to see traces to modify code

– hard to read - far from the traces in the file

– HPjmeter analyzes java.hprof.txt visually
• http://software.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPJMETER

– another good tool called PerfAnal builds 
and navigates the invocation tree

– download PerfAnal.jar, and:
java -jar PerfAnal.jar ./java.hprof.txt

• Heap dump 

– critical to see what objects are there, and who points to them

– HPjmeter or HAT:  https://hat.dev.java.net/
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TPTP

• a free extension to Eclipse for Java profiling

– easier to interpret than raw hprof results

– has add-ons for profiling web applications (J2EE)
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Profiler results

• What to do with profiler results:

– observe which methods are being called the most

• These may not necessarily be the "slowest" methods!

– observe which methods are taking most time relative to others

• Warnings

– CPU profiling slows down your code (a lot)

• design your profiling tests to be very short

– CPU samples don't measure everything

• doesn't record object creation and garbage collection time

– Output files are very large, esp. if there is a heap dump
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Garbage collection

• garbage collector: A memory manager that reclaims objects 
that are not reachable from a root-set

• root set: all objects with an immediate reference

– all reference variables in each frame of every thread's stack

– all static reference fields in all loaded classes

Size

Heap Size

Time

GC GC GC GC GC

Total size of 

reachable objects

Total size of 

allocated objects
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Profiling Web languages

• HTML/CSS

– YSlow: http://developer.yahoo.com/yslow/

• JavaScript

– Firebug: http://getfirebug.com/

• Ruby on Rails

– ruby-prof: http://ruby-prof.rubyforge.org/

– ruby-prof --printer=graph_html --file=myoutput.html myscript.rb

• JSP

– x.Link: http://sourceforge.net/projects/xlink/

• PHP

– Xdebug: http://xdebug.org/
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JavaScript optimization

• JavaScript is ~1000x slower than C code.

• Modifying a page using the DOM can be expensive.

var ul = document.getElementById("myUL");

for (var i = 0; i < 2000; i++) {

ul.appendChild(document.createElement("li"));

}

– Faster code that modifies DOM objects "offline":

var ul = document.getElementById("myUL");

var li = document.createElement("li");
var parent = ul.parentNode;

parent.removeChild(ul);
for (var i = 0; i < 2000; i++) {

ul.appendChild(li.cloneNode(true));
}

parent.appendChild(ul);


