
CSE 403
Lecture 18

Performance Testing

Reading:

Code Complete, Ch. 25-26 (McConnell)

slides created by Marty Stepp

http://www.cs.washington.edu/403/

2

Acceptance, performance

• acceptance testing: System is shown to the user / client /
customer to make sure that it meets their needs.

– A form of black-box system testing

• Performance is important.

– Performance is a major aspect of program acceptance by users.

– Your intuition about what's slow is often wrong.

3

What's wrong with this? (1)

public class BuildBigString {

public final static int REPS = 80000;

// Builds/returns a big, important string.

public static String makeString() {

String str = "";

for (int n = 0; n < REPS; n++) {

str += "more";

}

return str;

}

public static void main(String[] args) {

System.out.println(makeString());

}

}

4

What's wrong with this? (2)

public class Fibonacci {

public static void main(String[] args) {

// print the first 10000 Fibonacci numbers

for (int i = 1; i <= 10000; i++) {

System.out.println(fib(i));

}

}

// pre: n >= 1

public static long fib(int n) {

if (n <= 2) {

return 1;

} else {

return fib(n - 2) + fib(n - 1);

}

}

}

5

What's wrong with this? (3)

public class WordDictionary {

// The set of words in our game.

List<String> words = new ArrayList<String>();

public void add(String word) {

words.add(word.toLowerCase());

}

public boolean contains(String word) {

for (String s : words) {

if (s.toLowerCase().equals(word)) {

return true;

}

}

return false;

}

}

6

What's wrong with this? (4)

public class BankManager {

public static void main(String[] args) {

Account[] a = Account.getAll();

for (int i = 0; i < Math.sqrt(895732); i++) {

a[i].loadTaxData();

if (a.meetsComplexTaxCode(2020)) {

a[i].fileTaxes(4 * 4096 * 17);

}

}

Account[] a2 = Account.getAll();

for (int i = 0; i < Math.sqrt(895732); i++) {

if (a.meetsComplexTaxCode(2020)) {

a2[i].setTaxRule(4 * 4096 * 17);

a2[i].save(new File(a2.getName()));

}

} } }

7

The correct answers

1. Who cares?

2. Who cares?

3. Who cares?

4. Who cares?

• "We should forget about small efficiencies, say about 97% of
the time: premature optimization is the root of all evil."

-- Donald Knuth

• "We follow two rules in the matter of optimization:

1. Don't do it.

2. (for experts only) Don't do it yet."

-- M. A. Jackson

8

Thinking about performance

• The app is only too slow if it doesn't meet your project's
stated performance requirements.

– If it meets them, DON'T optimize it!

• Which is more important, fast code or correct code?

• What are reasonable performance requirements?

– What are the user's expectations? How slow is "acceptable" for
this portion of the application?

– How long do users wait for a web page to load?

– Some tasks (admin updates database) can take longer

9

Optimization myths

• Myth: You should optimize your code as you write it.

– No; makes code ugly, possibly incorrect, and not always faster.

– Optimize later, only as needed.

• Myth: Having a fast program is as important as a correct one.

– If it doesn't work, it doesn't matter how fast it's running!

• Myth: Certain operations are inherently faster than others.

– x << 1 is faster to compute than x * 2 ?

– This depends on many factors, such as language used.
Don't write ugly code on the assumption that it will be faster.

• Myth: A program with fewer lines of code is faster.

10

Perceived performance

• "My app feels too slow. What should I do?"

– possibly optimize it

– And/or improve the app's perceived performance

• perceived performance:
User's perception of your app's responsiveness.

• factors affecting perceived performance:

– loading screens

– multi-threaded UIs (GUI doesn't stall while
something is happening in the background)

11

Optimization metrics

• runtime / CPU usage

– what lines of code the program is spending the most time in

– what call/invocation paths were used to get to these lines

• naturally represented as tree structures

• memory usage

– what kinds of objects are on the heap

– where were they allocated

– who is pointing to them now

– "memory leaks" (does Java have these?)

• web page load times,
requests/minute, etc.

12

Benchmarking, optimization

• benchmarking: Measuring the absolute performance of your
app on a particular platform (coarse-grained measurement).

• optimization: Refactoring and enhancing to speed up code.

– I/O routines

• accessing the console (print statements)

• files, network access, database queries

•exec() / system calls

– Lazy evaluation saves you from computing/loading

• don't read / compute things until you need them

– Hashing, caching save you from reloading resources

• combine multiple database queries into one query

• save I/O / query results in memory for later

13

Optimizing memory access

• Non-contiguous memory access (bad):

for (int col = 0; col < NUM_COLS; col++) {

for (int row = 0; row < NUM_ROWS; row++) {

table[row][column] = bulkyMethodCall();

}

}

• Contiguous memory access (good):

for (int row = 0; row < NUM_ROWS; row++) {

for (int col = 0; col < NUM_COLS; col++) {

table[row][column] = bulkyMethodCall();

}

}

– switches rows NUM_ROWS times, not NUM_ROWS * NUM_COLS

14

Optimizing data structures

• Take advantage of hash-based data structures

– searching an ArrayList (contains, indexOf) is O(N)

– searching a HashMap/HashSet is O(1)

• Getting around limitations of hash data structures

– need to keep elements in sorted order? Use TreeMap/TreeSet

– need to keep elements in insertion order? Use LinkedHashSet

15

Avoiding computations

• Stop computing when you know the answer:

found = false;

for (i = 0; i < reallyBigNumber; i++) {

if (inputs[i].isTheOneIWant()) {

found = true;

break;

}

}

• Hoist expensive loop-invariant code outside the loop:

double taxThreshold = reallySlowTaxFunction();

for (i = 0; i < reallyBigNumber; i++) {

accounts[i].applyTax(taxThreshold);

}

16

Lookup tables

• Figuring out the number of days in a month:
if (m == 9 || m == 4 || m == 6 || m == 11) {

return 30;

} else if (month == 2) {

return 28;

} else {

return 31;

}

• Days in a month, using a lookup table:

DAYS_PER_MONTH = {-1, 31, 28, 31, 30, 31, 30, ..., 31};

...

return DAYS_PER_MONTH[month];

– Probably not worth the speedup with this particular example...

17

Optimization is deceptive

int sum = 0;

for (int row = 0; row < NUM_ROWS; row++) {

for (int col = 0; col < NUM_COLS; col++) {

sum += matrix[row][column];

}

}

• Optimized code:
int sum = 0;

Cell* p = matrix;

Cell* end = &matrix[NUM_ROWS - 1][NUM_COLS - 1];

while (p != end) {

sum += *p++;

}

• Speed-up observed: NONE.

– Compiler was already optimizing the original into the second!

18

Dynamic programming

public static boolean isPrime(int n) {

double sqrt = Math.sqrt(n);

for (int i = 2; i <= sqrt; i++)

if (n % i == 0) { return false; }

return true;

}

• dynamic programming: Caching previous results.

private static Map<Integer, Boolean> PRIME = ...;

public static boolean isPrime2(int n) {

if (!PRIME.containsKey(n))

PRIME.put(n, isPrime(n));

return PRIME.get(n);

}

19

Optimization tips

• Pareto Principle, aka the "80-20 Rule"

– 80% of a program's execution occurs within 20% of its code.

– You can get 80% results with 20% of the work.

• "The best is the enemy of the good."

– You don't need to optimize all your app's code.

– Find the worst bottlenecks and fix them. Leave the rest.

20

Profiling

• profiling: Measuring relative system statistics (fine-grained).

– Where is the most time being spent? ("classical" profiling)

• Which method takes the most time?

• Which method is called the most?

– How is memory being used?

• What kind of objects are being created?

• This in especially applicable in OO, GCed environments.

– Profiling is not the same as benchmarking or optimizing.

21

Types of profiling

• insertion: placing special profiling code into your program

(manually or automatically)

– pros: can be used across a variety of platforms; accurate

– cons: requires recompiling; profiling code may affect performance

• sampling: monitoring CPU or VM at regular intervals and

saving a snapshot of CPU and/or memory state

– pros: no modification of app is necessary

– cons: less accurate; varying sample interval leads to a

time/accuracy trade-off; small methods may be missed;

cannot easily monitor memory usage

22

Android Traceview

• Traceview:

– http://developer.android.com/tools/debugging/debugging-tracing.html

– Debug class generates *.trace files to be viewed

• Debug.startMethodTracing(); ... Debug.stopMethodTracing();

– timeline panel: describes when each thread/method start/stops

– profile panel: summary of what happened inside a method

23

Android profiling DDMS

• Dalvik Debug Monitor Server (DDMS):

– http://developer.android.com/tools/debugging/ddms.html

• Eclipse: Window → Open Perspective → Other... → DDMS

• console: run ddms from tools/ directory

– On Devices tab, select process that you want to profile

• Click Start Method Profiling

• Interact with application to run and profile its code.

24

Java profiling tools

• Many free Java profiling/optimization tools available:

– TPTP profiler extension for Eclipse

– Extensible Java Profiler (EJP) - open source, CPU tracing only

– Eclipse Profiler plugin

– Java Memory Profiler (JMP)

– Mike's Java Profiler (MJP)

– JProbe Profiler - uses an instrumented VM

• hprof (java -Xrunhprof)

– comes with JDK from Sun, free

– good enough for anything I've ever needed

25

Using hprof

usage: java -Xrunhprof:[help]|[<option>=<value>, ...]

Option Name and Value Description Default

--------------------- ----------- -------

heap=dump|sites|all heap profiling all

cpu=samples|times|old CPU usage off

monitor=y|n monitor contention n

format=a|b text(txt) or binary output a

file=<file> write data to file off

depth=<size> stack trace depth 4

interval=<ms> sample interval in ms 10

cutoff=<value> output cutoff point 0.0001

lineno=y|n line number in traces? Y

thread=y|n thread in traces? N

doe=y|n dump on exit? Y

msa=y|n Solaris micro state accounting n

force=y|n force output to <file> y

verbose=y|n print messages about dumps y

26

Sample hprof usage

java -Xrunhprof:cpu=samples,depth=6,heap=sites

or
java -Xrunhprof:cpu=old,thread=y,depth=10,cutoff=0,format=a

ClassName

– Takes samples of CPU execution

– Record call traces that include the last 6/10 levels on the stack

– Only record "sites" used on heap (to keep output file small)

java -Xrunhprof ClassName

– Takes samples of memory/object usage

• After execution, open the text file java.hprof.txt in the

current directory with a text editor

27

hprof visualization tools

• CPU samples

– critical to see traces to modify code

– hard to read - far from the traces in the file

– HPjmeter analyzes java.hprof.txt visually
• http://software.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPJMETER

– another good tool called PerfAnal builds
and navigates the invocation tree

– download PerfAnal.jar, and:
java -jar PerfAnal.jar ./java.hprof.txt

• Heap dump

– critical to see what objects are there, and who points to them

– HPjmeter or HAT: https://hat.dev.java.net/

28

TPTP

• a free extension to Eclipse for Java profiling

– easier to interpret than raw hprof results

– has add-ons for profiling web applications (J2EE)

29

Profiler results

• What to do with profiler results:

– observe which methods are being called the most

• These may not necessarily be the "slowest" methods!

– observe which methods are taking most time relative to others

• Warnings

– CPU profiling slows down your code (a lot)

• design your profiling tests to be very short

– CPU samples don't measure everything

• doesn't record object creation and garbage collection time

– Output files are very large, esp. if there is a heap dump

30

Garbage collection

• garbage collector: A memory manager that reclaims objects
that are not reachable from a root-set

• root set: all objects with an immediate reference

– all reference variables in each frame of every thread's stack

– all static reference fields in all loaded classes

Size

Heap Size

Time

GC GC GC GC GC

Total size of

reachable objects

Total size of

allocated objects

31

Profiling Web languages

• HTML/CSS

– YSlow: http://developer.yahoo.com/yslow/

• JavaScript

– Firebug: http://getfirebug.com/

• Ruby on Rails

– ruby-prof: http://ruby-prof.rubyforge.org/

– ruby-prof --printer=graph_html --file=myoutput.html myscript.rb

• JSP

– x.Link: http://sourceforge.net/projects/xlink/

• PHP

– Xdebug: http://xdebug.org/

32

JavaScript optimization

• JavaScript is ~1000x slower than C code.

• Modifying a page using the DOM can be expensive.

var ul = document.getElementById("myUL");

for (var i = 0; i < 2000; i++) {

ul.appendChild(document.createElement("li"));

}

– Faster code that modifies DOM objects "offline":

var ul = document.getElementById("myUL");

var li = document.createElement("li");
var parent = ul.parentNode;

parent.removeChild(ul);
for (var i = 0; i < 2000; i++) {

ul.appendChild(li.cloneNode(true));
}

parent.appendChild(ul);

