
CSE 403
Lecture 13

Black/White-Box Testing

Reading:

Software Testing: Principles and Practices, Ch. 3-4 (Desikan, Ramesh)

slides created by Marty Stepp

http://www.cs.washington.edu/403/

2

Testing questions

• Should I test my own code, or should somebody else?

• Which code of my project should I test the most/least?

• Can I test all possible inputs to see whether something works?

• How do I know if I've tested well/enough?

• What constitutes a good or bad test case method?

• Is it good or bad if a test case fails?

• What if a test case itself has a bug in it?

3

JUnit exercise

Given a Date class with the following methods:

– public Date(int year, int month, int day)

– public Date() // today

– public int getDay(), getMonth(), getYear()

– public void addDays(int days) // advances by days

– public int daysInMonth()

– public String dayOfWeek() // e.g. "Sunday"

– public boolean equals(Object o)

– public boolean isLeapYear()

– public void nextDay() // advances by 1 day

– public String toString()

• Come up with unit tests to check the following:
– That no Date object can ever get into an invalid state.

– That the addDays method works properly.

• It should be efficient enough to add 1,000,000 days in a call.

4

Test-driven development

• Imagine that we'd like to add a method subtractWeeks to

our Date class, that shifts this Date backward in time by the
given number of weeks.

• Write code to test this method before it has been written.

– This way, once we do implement the method, we'll know whether
it works.

5

Black and white box testing

What is the difference between black- and white-box testing?

• black-box (procedural) test: Written without knowledge of
how the class under test is implemented.

– focuses on input/output of each component or call

• white-box (structural) test: Written with knowledge of the
implementation of the code under test.

– focuses on internal states of objects and code

– focuses on trying to cover all code paths/statements

– requires internal knowledge of the component to craft input

• example: knowing that the internal data structure for a spreadsheet
uses 256 rows/columns, test with 255 or 257

6

Black-box testing

• black-box is based on requirements and functionality, not code

• tester may have actually seen the code before ("gray box")

– but doesn't look at it while constructing the tests

• often done from the end user or OO client's perspective

• emphasis on parameters, inputs/outputs (and their validity)

7

Types of black-box

• requirements based

• positive/negative - checks both good/bad results

• boundary value analysis

• decision tables

• equivalence partitioning - group related inputs/outputs

• state-based - based on object state diagrams

• compatibility testing

• user documentation testing

• domain testing

8

Boundary testing

• boundary value analysis: Testing conditions on bounds

between classes of inputs.

• Why is it useful to test near boundaries?

– likely source of programmer errors (< vs. <=, etc.)

– language has many ways to implement boundary checking

– requirement specs may be fuzzy about behavior on boundaries

– often uncovers internal hidden limits in code

• example: array list must resize its internal array when it fills capacity

9

Boundary example

• Imagine we are testing a Date class with a

daysInMonth(month, year) method.

– What are some conditions and boundary tests for this method?

• Possible answers:

– check for leap years (every 4th yr, no 100s, yes 400s)

– try years such as: even 100s, 101s, 4s, 5s

– try months such as: June, July, Feb, invalid values

10

Decision tables

11

Equivalence testing

• equivalence partitioning:

– A black-box test technique to reduce # of required test cases.

– What is it?

– steps in equivalence testing:

• identify classes of inputs with same behavior

• test on at least one member of each equivalence class

• assume behavior will be same for all members of class

– criteria for selecting equivalence classes:

• coverage : every input is in one class

• disjointedness : no input in more than one class

• representation : if error with 1 member of class, will occur with all

12

White-box testing

Some kinds of white box testing don't involve unit tests:

• "static testing"

– code walkthroughs, inspections, code reviews

– static analysis tools

• Lint (and variants) JiveLint, JLint, PMD, CheckR, JSLint, php -l

• CheckStyle http://checkstyle.sourceforge.net/

• FindBugs http://findbugs.sourceforge.net/

– code complexity analysis tools

• PMD, CheckStyle, etc.

13

Static analysis example

14

Complexity analysis

15

Path testing

• path testing: an attempt to use test input that will pass once
over each path in the code

– path testing is white box

– What would be path testing for daysInMonth(month, year)?
some ideas:

• error input: year < 1, month < 1, month > 12

• one month from [1, 3, 5, 7, 10, 12]

• one month from [4, 6, 9, 11]

• month 2
– in a leap year, not in a leap year

16

Code coverage testing

• code coverage testing: Examines what fraction of the code
under test is reached by existing unit tests.

– statement coverage - tries to reach every line (impractical)

– path coverage - follow every distinct branch through code

– condition coverage - every condition that leads to a branch

– function coverage - treat every behavior / end goal separately

• Several nice tools exist for checking code coverage

– EclEmma, Cobertura, Hansel, NoUnit, CoView ...

17

Code coverage example

18

Path coverage example

19

White box testing is hard

• Developers can't easily spot flaws in their own code.

• Test cases that are too focused on code may not be thinking
about how the class is actually going to be used.

• Code coverage tools can give a false sense of security.

– Just because code is "covered" doesn't mean it is free of bugs.

• Code complexity can be misleading.

– Complex code is not always bad code.

– Complexity analysis tools can be overly picky or cumbersome.

20

Testing exercise 1

• Imagine that we have a Date class with working methods
called isLeapYear(year) and daysInMonth(month, year).

– Question: What is the pseudo-code for the algorithm for an
addDays(days) method that moves the current Date object
forward in time by the given number of days. A negative value
moves the Date backward in time.

– Question: Come up with a set of test values for your addDays
method to test its correctness.

21

Testing exercise 2

• Consider tests to determine whether a Scrabble move is legal:

– Are all tiles in a straight line?

– Are the tiles contiguous or separated only by existing old tiles?

– Are the tiles touching an existing old tile?

– On each of the words made:
• What is the score of this word?

• Is this word in the dictionary?

• Question: What is/are some suitable Scrabble test board
configuration(s) and moves that check each of these
conditions?

– Make both passing and failing tests.

