
CSE 403
Lecture 11

Static Code Analysis

Reading:

IEEE Xplore, "Using Static Analysis to Find Bugs"

slides created by Marty Stepp

http://www.cs.washington.edu/403/

2

FindBugs

• FindBugs: Java static analysis tool
that focuses on bugs and usage
errors in code.

– null pointers

– useless/dead code

– unclosed I/O streams

– infinite loops

– infinite recursion

• FindBugs has been run on the actual JDK 1.6 source, the
Eclipse source, and many errors.

– What kind of bugs and problems were found?

3

Checkstyle

• Checkstyle: A static analysis tool that focuses on
Java coding style and standards.

– whitespace and indentation

– variable names

– Javadoc commenting

– code complexity
• number of statements per method

• levels of nested ifs/loops

• lines, methods, fields, etc. per class

– proper usage
• import statements

• regular expressions

• exceptions

• I/O

• thread usage, ...

4

Automated Build Systems

• Fairly essential, used on most large programming projects.

– Why? Why not Makefiles or shell scripts instead?

– What are these tools aiming to do?

– What other tools integrate well with them?

– What features would you want from an automated build tool?

5

Ant

• Ant ("another neat tool"):
A Java build management tool.

– developed by Apache to help
build their Tomcat web server

– expanded into a general tool

• Ant is a commonly used build tool for Java programs giving
many more build options than the old "Make" utility.

– built for Java, so it understands Java concepts like:

• classpath,

• javac, .class files,

• JARs,

• JUnit, etc.

6

An Ant Build File

• Similar to Make, but Ant uses build.xml instead of Makefile:

<project>

<target name="name">

tasks
</target>

<target name="name">

tasks
</target>

</project>

• A task can be a command such as:
<javac … />

<mkdir … />

<delete … />

– More: http://ant.apache.org/manual/tasksoverview.html

7

Ant build.xml Example

<project>

<target name="clean">

<delete dir="build"/>

</target>

<target name="compile">

<mkdir dir="build/classes"/>

<javac srcdir="src"

destdir="build/classes"/>

</target>

</project>

8

Ant Task Integration

• To integrate other tools with Ant, download
custom Ant tasks for those tools.

– JUnit Ant task

– Checkstyle Ant task

– FindBugs Ant task

– ...

– Search for these,
and instructions for adding them, on Google

9

JUnit Ant Task Example

<project>

<property name="src" value="./src" />

<property name="lib" value="./lib" />

<property name="classes" value="./classes" />

<property name="test.class.name" value="com.xyz.MyTestSuite" />

<path id="test.classpath">

<pathelement location="${classes}" />

<pathelement location="/path/to/junit.jar" />

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</path>

<!-- Define the Ant task for running JUnit: -->

<target name="test">

<junit fork="yes" haltonfailure="yes">

<test name="${test.class.name}" />

<formatter type="plain" usefile="false" />

<classpath refid="test.classpath" />

</junit>

</target>

– on command line: ant test

10

Ant and Eclipse

• Ant integrates nicely with Eclipse.

– You can set up a "Build", "Run",
or "Debug" task that uses Ant.

– Eclipse can create an Ant build
file for you from an existing
project that builds its code.

– Eclipse also has an Ant build
file editor:

11

Maven

• Maven: A project management,
comprehension, and build tool.

– A successor / replacement for Ant.

– Made by Apache, makers of Ant.

• Differences from Ant:

– more powerful; higher level of abstraction

– great for generating reports and visualizations

– can run integration tests and continuous integration (seen later)

– can handle deployment of an app or site

12

Maven and Eclipse

• Since Maven is newer, tool support (e.g. Eclipse integration)
was slower to arrive, but it is generally mature now

