
CSE 403
Lecture 7

UML Class Diagrams

Reading:

UML Distilled, Ch. 3, M. Fowler

slides created by Marty Stepp

http://www.cs.washington.edu/403/

2

How do we design classes?

• class identification from project spec / requirements

– nouns are potential classes, objects, fields

– verbs are potential methods or responsibilities of a class

• CRC card exercises

– write down classes' names on index cards

– next to each class, list the following:
• responsibilities: problems to be solved; short verb phrases

• collaborators: other classes that are sent messages by this class
(asymmetric)

• UML

– class diagrams (today)

– sequence diagrams

– ...

3

Introduction to UML

• Unified Modeling Language (UML): depicts an OO system

– programming languages are not abstract enough for OO design

– UML is an open standard; lots of companies use it

• many programmers either know UML or a "UML-like" variant

• UML is ...

– a descriptive language: rigid formal syntax (like programming)

– a prescriptive language: shaped by usage and convention

– UML has a rigid syntax, but some don't follow it religiously

– it's okay to omit things from UML diagrams if they aren't needed
by team/supervisor/instructor

4

Diagram of one class

• class name in top of box

– write <<interface>> on top of interfaces' names

– use italics for an abstract class name

• attributes

– should include all fields of the object

– also includes derived "properties"

• operations / methods

– may omit trivial (get/set) methods

• but don't omit any methods from an interface!

– should not include inherited methods

5

Class attributes

• attributes (fields, instance variables)

– visibility name : type [count] = defaultValue

– visibility: + public
protected
- private
~ package (default)
/ derived

– underline static attributes

– derived attribute: not stored, but can
be computed from other attribute values

– attribute example:
- balance : double = 0.00

6

Class operations / methods

• operations / methods

– visibility name (parameters) : returnType

– underline static methods

– parameter types listed as (name: type)

– omit returnType on constructors and
when return is void

– method example:

+ distance(p1: Point, p2: Point): double

7

Inheritance relationships

– hierarchies drawn top-down with arrows
pointing upward to parent

– line/arrow styles differ based on parent:

• class : solid, black arrow

• abstract class : solid, white arrow

• interface : dashed, white arrow

– we often don't draw trivial / obvious
relationships, such as drawing the class
Object as a parent

8

Associational relationships

1. multiplicity (how many are used)

• * ⇒ 0, 1, or more

• 1 ⇒ 1 exactly

• 2..4 ⇒ between 2 and 4, inclusive

• 3..* ⇒ 3 or more

2. name (what relationship the objects have)

3. navigability (direction)

9

Multiplicity

• one-to-one

– each student must have exactly one ID card

• one-to-many

– a RectangleList can contain 0, 1, 2, ... rectangles

10

Association types

• aggregation: "is part of"

– clear white diamond

• composition: "is entirely made of"

– stronger version of aggregation

– the parts live and die with the whole

– black diamond

• dependency: "uses temporarily"

– dotted line or arrow

– often is an implementation
detail, not an intrinsic part of
that object's state

1

1
aggregation

Car

Engine

Lottery

Ticket
Random

dependency

Page

Book

composition

*

1

11

Class design exercise

• Consider this Texas Hold 'em poker game system:

– 2 to 8 human or computer players

– Each player has a name and stack of chips

– Computer players have a difficulty setting: easy, medium, hard

– Summary of each hand:
• Dealer collects ante from appropriate players, shuffles the deck, and deals

each player a hand of 2 cards from the deck.

• A betting round occurs, followed by dealing 3 shared cards from the deck.

• As shared cards are dealt, more betting rounds occur, where each player can
fold, check, or raise.

• At the end of a round, if more than one player is remaining, players' hands
are compared, and the best hand wins the pot of all chips bet.

– What classes are in this system? What are their responsibilities?
Which classes collaborate?

– Draw a class diagram for this system. Include relationships
between classes (generalization and associational).

12

Poker class diagram

13

Class diag. pros/cons

• Class diagrams are great for:

– discovering related data and attributes

– getting a quick picture of the important entities in a system

– seeing whether you have too few/many classes

– seeing whether the relationships between objects are too
complex, too many in number, simple enough, etc.

– spotting dependencies between one class/object and another

• Not so great for:

– discovering algorithmic (not data-driven) behavior

– finding the flow of steps for objects to solve a given problem

– understanding the app's overall control flow (event-driven? web-
based? sequential? etc.)

14

Qualities of modular software

• decomposable

– can be broken down into pieces

• composable

– pieces are useful and can be combined

• understandable

– one piece can be examined in isolation

• has continuity

– reqs. change affects few modules

• protected / safe

– an error affects few other modules

15

Heuristics 2 quick reference

• Heuristic 2.1: All data should be hidden within its class.

• Heuristic 2.2: Users of a class must be dependent on its public interface, but a class should
not be dependent on its users.

• Heuristic 2.3: Minimize the number of messages in the protocol of a class.

• Heuristic 2.4: Implement a minimal public interface that all classes understand.

• Heuristic 2.5: Do not put implementation details such as common-code private functions into
the public interface of a class.

• Heuristic 2.6: Do not clutter the public interface of a class with items that users of that class
are not able to use or are not interested in using.

• Heuristic 2.7: Classes should only exhibit nil or export coupling with other classes, that is, a
class should only use operations in the public interface of another class or have nothing to do
with that class.

• Heuristic 2.8: A class should capture one and only one key abstraction.

• Heuristic 2.9: Keep related data and behavior in one place.

• Heuristic 2.10: Spin off non-related behavior into another class (i.e., non-communicating
behavior).

• Heuristic 2.11: Be sure the abstractions that you model are classes and not simply the roles
objects play.

16

Interface/implementation

• public interface: visible data/behavior of an object

– can be seen and executed externally

• private implementation: internal data/methods in an object

– helps implement the public interface; cannot be directly accessed

• client: code that uses your class/subsystem

– Example: radio

• public interface is the speaker, volume buttons, station dial

• private implementation is the guts of the radio; the transistors,
capacitors, frequencies, etc. that user should not see

17

Poker design question 1

• Poker Deck class stores a list of cards; the game needs to be

able to shuffle and draw the top card.

– We give the Deck class the following methods:
add(Card), add(index, Card), getCard(int), indexOf(Card),

remove(index), shuffle(), drawTopCard(), etc.

– What's wrong with this design?

– Heuristic 2.3: Minimize the # of messages in the protocol of a class.

– Heuristic 2.5: Do not put implementation details such as common-code
private functions into the public interface of a class.

– Heuristic 2.6: Do not clutter the public interface of a class with items
that users of that class are not able to use or are not interested in using.

18

Minimizing public interface

– Make a method private unless it needs to be public.

– Supply getters (not setters) for fields if you can get away with it.

• example: Card object with rank and suit (get-only)

– In a class that stores a data structure, don't replicate that
structure's entire API; only expose the parts clients need.

• example: If PokerGame has an inner set of Players, supply just an
iterator or a getPlayerByName(String) method

– Use a Java interface with only the needed methods, and then
refer to your class by the interface type in client code.

19

Poker design question 2

• Proposed fields in various poker classes:

– A Hand stores 2 cards and the Player whose hand it is.

– A Player stores his/her Hand, last bet, a reference to the other
Players in the game, and a Deck reference to draw cards.

– The PokerGame stores an array of all Players, the Deck, and

an array of all players' last bets.

– What's wrong with this design?

20

Cohesion and coupling

• cohesion: how complete and related things are in a class

(a good thing)

• coupling: when classes connect to / depend on each other

(too much can be a bad thing)

– Heuristic 2.7: Classes should only exhibit nil or export coupling
with other classes; that is, a class should only use operations in
the public interface of another class or have nothing to do with
that class.

• (in other words, minimize unnecessary coupling)

21

Reducing coupling

– combine 2 classes if they don't represent a whole abstraction

• example: Bet and PlayRound

– make a coupled class an inner class

• example: list and list iterator; binary tree and tree node

• example: GUI window frame and event listeners

– provide simpler communication between subsystems

• example: provide methods (newGame, reset, ...) in PokerGame so

that clients do not need to manually refresh the players, bets, etc.

22

Heuristics 3 quick reference

• Heuristic 3.1: Distribute system intelligence horizontally as uniformly as possible, that is, the
top-level classes in a design should share the work uniformly.

• Heuristic 3.2: Do not create god classes/objects in your system. Be very suspicious of a
class whose name contains Driver, Manager, System, or Subsystem.

• Heuristic 3.3: Beware of classes that have many accessor methods defined in their public
interface.

• Heuristic 3.4: Beware of classes that have too much noncommunicating behavior.

• Heuristic 3.5: In applications that consist of an object-oriented model interacting with a user
interface, the model should never be dependent on the interface.

• Heuristic 3.6: Model the real world whenever possible.

• Heuristic 3.7: Eliminate irrelevant classes from your design.

• Heuristic 3.8: Eliminate classes that are outside the system.

• Heuristic 3.9: Do not turn an operation into a class. Be suspicious of any class whose name
is a verb or is derived from a verb, especially those that have only one piece of meaningful
behavior (don't count set, get, print).

• Heuristic 3.10: Agent classes are often placed in the analysis model of an application.
During design time, many agents are found to be irrelevant and should be removed.

23

Poker design question 3

• Our PokerGame class:

– stores all the players

– stores an array of cards representing the card deck

– stores all bets and money

– does the logic for each betting round

– performs the AI for each computer player's moves

– What's wrong with this design?

PokerGame

24

God classes

• god class: a class that hoards too much
of the data or functionality of a system.

– Heuristic 2.8: A class should capture one and only one key abstraction.

– Heuristic 3.2: Do not create god classes/objects in your system. Be
very suspicious of a class whose name contains Driver, Manager,
System, or Subsystem.

– Heuristic 3.4: Beware of classes that have too much non-
communicating behavior, that is, methods that operate on a proper
subset of the data members of a class. God classes often exhibit much
non-communicating behavior.

25

Poker design question 4

• Each new game round, the PokerGame wants to deal cards to

each player. During the game, players draw additional cards.

– We will create a Dealer class that the PokerGame asks to deal

the cards to every player.

– Player objects will store a reference to the Dealer.

During the game, they will talk to the dealer to draw their cards.
The Dealer will notify the Game once all players have drawn.

– What's wrong with this design?

26

Poker design question 5

– Cards belong to one of four suits. So we have created classes
Club, Diamond, Heart, Spade class to represent each suit.

– In each game round, one player is the dealer and one is the first
better. Also each turn there is a next better waiting. So we have
created classes Dealer, NextBetter, FirstBetter.

– Every game has several betting rounds, each round consisting of
several bets. So we have created classes Bet and
CurrentBettingRound.

– What's wrong with this design?

27

Proliferation of classes

• proliferation of classes: too many classes that are too small
in size/scope; makes the system hard to use, debug, maintain

– Heuristic 2.11: Be sure the abstractions that you model are classes
and not simply the roles objects play.

– Heuristic 3.7: Eliminate irrelevant classes from your design.

• often have only data and get/set methods; or only methods, no real data

– Heuristic 3.8: Eliminate classes that are outside the system.

• don't model a Blender just because your company sells blenders;
don't necessarily model a User just because the system is used by somebody

– Heuristic 3.9: Do not turn an operation into a class.

• Be suspicious of any class whose name is a verb, especially those that have only
one piece of meaningful behavior. Move the behavior to another class.

28

Poker design question 6

• A player may bet only as much $ as they have; and if a prior
player has made a "call", the current player cannot raise.

– Where should these policies be enforced?

– Design 1: Player class remembers whether that player is in the

game, what that player's current bet is, whether it is his turn, etc.

•Player checks whether a "call" has been made.

•Player checks whether he/she has enough to make a given bet.

– Design 2:

•PokerGame class remembers who is in the game.

•Betting class remembers every player's current bets, checks $.

•Dealer class remembers whose turn it is.

29

Related data and behavior

– Heuristic 2.9: Keep related data and behavior in one place.
• avoids having to change two places when one change is needed

– Heuristic 3.3: Beware of classes that have many accessor
methods ... [This] implies that related data and behavior are not
being kept in one place.
• "policy" behavior should be where that policy is enforced/enacted

