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Big questions

• What's the point of prototyping?  Should I do it?

– If so, when in the overall process or "lifecycle" should I?

• Should I make my prototype on paper or digitally?

• How do I know whether my UI is good or bad?

– What are the ways in which a UI's "quality" can be quantified?

– What are some examples of software you use that have especially 
good/bad UIs?  What do you think makes them good/bad?
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Usability and SW design

• usability: The effectiveness with which users can achieve 
tasks in a software environment.

– studying and improving usability is part of 
Human-Computer Interaction (HCI)

– usability and good UI design are closely related

– a bad UI can have unfortunate results...
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Achieving usability

• some methods to achieve good usability:

– user testing / field studies
• having users use the product and gathering data

– evaluations and reviews by UI experts

– card sorting
• Show users various UI menus and ask them to group the ones that 
are similar, to see what UI tasks are seen as being related by users.

– prototyping
• paper prototyping

• code prototyping

• Good UI design focuses on the user, not developer or system.
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Prototyping

• prototyping: Creating a scaled-down or incomplete version of 
a system to demonstrate or test aspects of it.

• What are some possible benefits of prototyping?

– aids UI design

– help discover requirements

– help discover test cases and provide a basis for testing

– allows interaction with user and customer to ensure satisfaction

– team-building
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Some prototyping methods

• UI builders (Visual Studio, etc.)

– draw a GUI visually by dragging/dropping UI controls on screen

• implementation by hand

– writing a "rough" version of your code

• paper prototyping: a paper version of a UI

Question: Why not just code up a working code prototype?

– much faster to create than code

– can change faster than code

– more visual bandwidth (can see more at once)

– more conducive to working in teams

– can be done by non-technical people
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Where does it fit in?

• At what point in the software lifecycle should we do (paper) 
prototyping?  When would it be most useful to do it?  Why?

• We talk about requirements being about "what" and design 
being about "how."  Which is paper prototyping?

– PP helps uncover requirements and also upcoming design issues

– do PP during or after requirements; before design

– "what" vs. "how": PP shows us "what" is in the UI, but it also 
shows us details of "how" the user can achieve goals in the UI
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P.P. usability session

• user is given tasks to perform using paper prototype

• session can be observed by people or camera

• one developer can "play computer"

Facilitator

User

“Computer”

Observer(s)
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Schneiderman's 8 Golden Rules

• Strive for consistency.
• Give shortcuts to the user.
• Offer informative feedback.
• Make each interaction with 
the user yield a result.

• Offer simple error handling.
• Permit easy undo of actions.
• Let the user be in control.
• Reduce short-term memory 
load on the user.

(from Designing the User Interface, by Ben Schneiderman of UMD, HCI/UI expert)
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UI design and components

• When should we use:

– A button?

– A check box?

– A radio button? 

– A text field?

– A list?

– A combo box?

– A menu?

– A dialog box?

– Other..?
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UI design examples



12

Apple Mac user interfaces
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UI Hall of Shame

• http://homepage.mac.com/bradster/iarchitect/shame.htm
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Layout and color
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Bad error messages
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UI design - buttons, menus

• Use buttons for single independent actions that are relevant 
to the current screen.

– Try to use button text with verb phrases such as "Save" or 
"Cancel", not generic: "OK", "Yes", "No"

– use Mnemonics or Accelerators (Ctrl-S)

– tool tips are helpful, but don't rely on them
(many users don't know to hover to find them)

• Use toolbars for common actions.

• Use menus for infrequent actions applicable to many screens.

– Users don't like menus! Try not to rely 
too much on menus.  Provide 
another way to access the same 
functionality (toolbar, hotkey, etc)
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Checkboxes, radio buttons

• Use check boxes for independent on/off switches (boolean) 

• Use radio buttons for a small number of related choices, 
when only one can be activated at a time (enum / constants)
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Lists, combo boxes, etc.

• use text fields (usually with a label) when 
the user may type in anything they want
– you will usually have to validate the input

• use lists when there are many fixed choices 
(too many for radio buttons to be practical) 
and you want all choices visible at once

• use combo boxes when there are many 
fixed choices, but you don't want to take up 
screen space by showing them all at once

• use a slider or spinner for a 
numeric value with fixed range
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An example UI

• Did the designer of this UI choose the right components?

– assume there are 30 collections and 3 ways to search
(by title, author, relevancy)

LIBSYS: Search

Choose collection:

Phrase:

Search by:

Adjacent words

All

Title

Yes No

OK

Default

Cancel
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UI design - multiple screens

• you can use a tabbed pane when there are many screens 
that the user may want to switch between at any moment

– or multiple pages, if it's a web site

• use dialog boxes or option panes to present temporary 
screens or options

– users hate popup dialogs; use them
very rarely

– don't prompt for lots of user input by
popping up dialogs

• instead, put the choices on the existing
window as buttons, etc.
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"Wizards"

• wizard: series of dialog boxes to progress through a task

• In the mid-1990s, Microsoft changed most of its Windows apps 
to use "wizards" for installation and settings.

– Why did they do this?

– What are the pros and cons of a "wizard" UI?
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Creating a paper prototype

• gather materials

– paper, pencils/pens

– tape, scissors

– highlighters, transparencies

• identify the screens in your UI

– consider use cases, inputs and outputs to user

• think about how to get from one screen to next

– this will help choose between tabs, dialogs, etc.
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Application backgrounds

• draw the app background (the parts that matter for the 
prototyping) on its own, then lay the various subscreens on top
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Representing a changing UI

• layers of UI can be placed on top of background as user clicks 
various options
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Interactive widgets

cut out a separate gray 
version that can be placed 
on top of the normal one

a disabled widget

highlighted piece of tapeselections

put the expanded choices on 
a separate paper / Post-It

combo boxes

removable tapetext fields

index cards or small paperstabs and dialog boxes

tapebuttons or check boxes

how to simulate itwidget
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Example paper prot. screen
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Example paper prototype
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Prototyping exercise

• Let's draw a prototype for a music player (e.g. iTunes).

– Assume that the program lets you store, organize, and play songs
and music videos.

– Draw the main player UI and whatever widgets are required to do 
a search for a song or video.

– After the prototypes are done, we'll try walking through each UI.

• Things to think about:

– How many clicks are needed?  What controls to use?

– Could your parents figure it out without guidance?


