Thursday, November 7, 2013
Presentation by Nat Guy
11 commonly occurring “Code Smells”

Goal of evaluating code against code smells: To produce higher-quality, maintainable code that is
superior to code that just “works” somehow but may be brittle or ugly. Can be done manually or in
some cases with static checkers (search for your programming language and code smell detector).

Descriptions taken from
http://www.codinghorror.com/blog/2006/05/code-smells.html

YouTube demos mostly by Jason Gorman of Codemanship (http://www.codemanship.co.uk)
Most examples of how to fix smelly code from http://sourcemaking.com

A taxonomy of code smells (groups smells together by category) is at
http://www.soberit.hut.fi/mmantyla/badcodesmellstaxonomy.htm

Name

Description

Message chain

Watch out for long sequences of method calls or temporary variables to get
routine data. Intermediaries are dependencies in disguise.

http://www.youtube.com /watch?v=5EruE60XYTU
http://sourcemaking.com/refactoring/message-chains

Data clumps

If you always see the same data hanging around together, maybe it belongs
together. Consider rolling the related data up into a larger class.

http://www.youtube.com/watch?v=dytbm2coxNk
http://sourcemaking.com/refactoring/data-clumps

Duplicate code

Duplicated code is the bane of software development. Stamp out duplication
whenever possible. You should always be on the lookout for more subtle
cases of near-duplication, too. Don't Repeat Yourself!

http://en.wikipedia.org/wiki/Don%z27t_repeat_yourself
http://www.artima.com/intv/dry.html

http://www.youtube.com/watch?v=n45-L8bp2cU
http://sourcemaking.com/refactoring/duplicated-code

Nested ifs
(“Conditional
complexity” on
codinghorror site)

Watch out for large conditional logic blocks, particularly blocks that tend to
grow larger or change significantly over time. Consider alternative object-
oriented approaches such as decorator, strategy, or state.

Example code before and after refactoring
http://blogs.agilefags.com/tag/conditional-complexity/

Long parameter lists

The more parameters a method has, the more complex it is. Limit the number
of parameters you need in a given method, or use an object to combine the
parameters.

http://www.youtube.com/watch?v=szOkSrZGmHU
http://sourcemaking.com/refactoring/long-parameter-list




Feature envy

Methods that make extensive use of another class may belong in another
class. Consider moving this method to the class it is so envious of.

http://www.youtube.com /watch?v=08o0drj2pbCA
http://sourcemaking.com/refactoring/feature-envy

Middleman classes

If a class is delegating all its work, why does it exist? Cut out the middleman.
Beware classes that are merely wrappers over other classes or existing
functionality in the framework.

http://www.youtube.com /watch?v=jJfYOD0j5TU (by David Donahue)
http://sourcemaking.com/refactoring/middle-man

Data classes

Avoid classes that passively store data. Classes should contain data and
methods to operate on that data, too.

http://www.youtube.com/watch?v=r6gy0qoR8AA
http://sourcemaking.com/refactoring/data-class

Long method

All other things being equal, a shorter method is easier to read, easier to
understand, and easier to troubleshoot. Refactor long methods into smaller
methods if you can.

http://www.youtube.com/watch?v=U4hlpntxWYc
http://sourcemaking.com/refactoring/long-method

Large class

Large classes, like long methods, are difficult to read, understand, and
troubleshoot. Does the class contain too many responsibilities? Can the large
class be restructured or broken into smaller classes?

http://sourcemaking.com/refactoring/large-class

Uber-class

(aka “god class” or
“brain class”, not
listed at
codinghorror)

Some disagreements on whether these classes are “bad” and need to be split
up into smaller classes.

http://sourcemaking.com/antipatterns/the-blob




