
CSE 403
Lecture C

Security Testing for Mobile and Web Apps

slides created by Marty Stepp
http://www.cs.washington.edu/403/

2

Outline

• Designing for security

• Web security

• Thinking like an attacker: finding vulnerabilities

• Android security risks

Designing for security

4

Methods of security
• Security through obscurity: Relying on the fact that

attackers don't know something needed to harm you.

–  Example: "If an attacker pointed their browser to http://foo.com/
passwords.txt, they'd get our passwords. But nobody knows that
file is there, so we are safe."

–  Example: "Our app saves its sensitive user data using SQLite
which ends up as a file on the local file system."

–  Example: "Our authentication database goes down for 2 minutes
every night at 4am. During that time any user can log in without
restrictions. But no one knows this, and the odds of a login at
that time are miniscule."

5

Secure authentication
•  Force users to log in to your system before performing

sensitive operations

• Use secure protocols (https, etc.) to prevent sniffing
–  Some sites use HTTPS only for login page, then switch back to

regular HTTP for future page views. Is this bad?

•  Force users to use strong passwords
–  not "password", or "abc", or same as their user name, etc.

6

Principle of least privilege
• principle of least privilege:

Granting just enough authority to get the job done (no more!).

–  Examples:
• Code should not "run as root" or as a highly privileged user unless

absolutely necessary.
• A web server should only be given access to the set of HTML files that

the web server is supposed to serve.

–  Turn off unnecessary services on your server
• disable SSH, VNC, sendmail, etc.
• close all ports except 80, and any

others needed for web traffic

7

Sanitizing inputs
•  sanitizing inputs: Encoding and filtering untrusted user input

before accepting it into a trusted system.
–  Ensure that accepted data is the right type, format, length...
–  Disallow entry of bad data into a graphical form.
–  Remove any SQL code from submitted user names.
–  Encode/sanitize input text that is displayed back to the user.

8

Verifying that code is secure
• Before code is written:

–  considering security in the design process

• As code is being written:
–  code reviews
–  code security audits
–  pair programming

• After code has been written:
–  walkthroughs
–  system security audits
–  system/functional security testing
–  penetration tests

9

Security audits
•  security audit: A series of checks and questions to assess the

security of your system.
–  can be done by an internal or external auditor
–  best if done as a process, not an individual event

• penetration test: Targeted white-hat attempt to compromise
your system's security.

•  risk analysis: Assessment of relative risks of what can go
wrong when security is compromised.

10

Security audit questions
•  Does your system require secure authentication with passwords?
•  Are passwords difficult to crack?
•  Are there access control lists (ACLs) in place on network devices?
•  Are there audit logs to record who accesses data?

•  Are the audit logs reviewed?
•  Are your OS security settings up to accepted industry levels?
•  Have all unnecessary applications and services been eliminated?
•  Are all operating systems and applications patched to current levels?
•  How is backup media stored? Who has access to it? Is it up-to-date?
•  Is there a disaster recovery plan? Has it ever been rehearsed?
•  Are there good cryptographic tools in place to govern data encryption?
•  Have custom-built applications been written with security in mind?
•  How have these custom applications been tested for security flaws?
•  How are configuration and code changes documented at every level? How are these

records reviewed and who conducts the review?

11

Data classification
• data classification table: For each kind of data your app

saves/uses, ask yourself:
–  Is this information personal or sensitive in nature?
–  What does my app do with this information?
–  Where and in what format is it saved?
–  Is it sent over the network?
–  (for all above) Does it need to be? Can I reduce my use?

12

Data storage location
• Where is your app storing its data, and why? Is it secure?

13

Encryption
• You can easily encrypt data in Android just before/after saving

it to the device's SD card or local database.

private static byte[] encrypt(byte[] key, byte[] data) {
 SecretKeySpec sKeySpec = new SecretKeySpec(key, "AES");
 Cipher cipher;
 byte[] ciphertext = null;
 try {
 cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.ENCRYPT_MODE, sKeySpec);
 ciphertext = cipher.doFinal(data);
 } catch (NoSuchAlgorithmException e) {
 Log.e(TAG, "NoSuchAlgorithmException");
 } catch (InvalidKeyException e) {
 Log.e(TAG, "InvalidKeyException");
 } catch (Exception e) {
 Log.e(TAG, "Exception");
 }
 return ciphertext;
}

14

Mobile+web apps
• OWASP Top 10 issues for mobile

apps that talk to web apps:
–  Identify and protect sensitive data on the mobile device.
–  Handle password credentials securely on the device.
–  Ensure that sensitive data is protected in transit.
–  Implement user authentication and session management correctly.
–  Keep the back-end APIs (services) and the platform (server) secure.
–  Perform data integration with third party services/apps securely.
–  Pay specific attention to the collection and storage of consent for the

collection and use of the user’s data.
–  Implement controls to prevent unauthorized access to paid-for

resources (e.g., wallet, SMS, and phone calls).
–  Ensure secure distribution/provisioning of mobile applications.
–  Carefully check any runtime interpretation of code for errors.

15

Secure web (HTTPS)
• man-in-the-middle attack:

–  unauthorized third party
can hear web traffic
on its hops between
client and server

•  For security, all web traffic
in your app should use
HTTPS secure protocol.
–  built on Secure Socket Layer (SSL)

Web security

17

Denial-of-Service (DoS)
• Denial of Service (DoS) attack:

Attacker causes web server to be unavailable.

• How attack is performed:
–  Attacker frequently requests many pages from your web site.

• distributed DoS (DDoS): DoS using lots of computers

–  Your server cannot handle this many requests at a time, so it
turns into a smoldering pile of goo (or just becomes very slow).

•  Problems that this attack can cause:
–  Users cannot get to your site.
–  Online store's server crashes -> store loses potential revenue.
–  Server may crash and lose or corrupt important data.
–  All the bandwidth used by the DoSers may cost you $$$.

18

Packet sniffing
• packet sniffing: Listening to traffic sent on a network.

–  Many internet protocols (http, aim, email) are unsecure.
–  If an attacker is on the same local network (LAN) as you, he can:

• read your email/IMs as you send them
• see what web sites you are viewing
• grab your password as it's being sent to the server

•  solutions:
–  Use secure protocols (ssh, https)
–  Encryption
–  Don't let creeps on your LAN/wifi

19

Password cracking
• password cracking:

Guessing the passwords of privileged users of your system.

• How attack is performed:
–  brute force attack: Attacker uses software that sequentially

tries every possible password.
–  dictionary attack: Attacker uses software that sequentially tries

passwords based on words in a dictionary.
• every word in the dictionary
• combinations of words, numbers, etc.

• What you can do about it:
–  Force users to have secure passwords.
–  Block an IP address from logging in after N failed attempts.

20

Phishing/social engineering
• phishing: Masqueraded mails or web sites.

–  social engineering: Attempts to manipulate users, such as
fraudulently acquiring passwords or credit card numbers.

•  Problems:
–  If trusted users of your

system are tricked into
giving out their personal
information, attackers
can use this to log in as
those users and
compromise your system.

21

Privilege escalation
• privilege escalation: Attacker becomes able to run code on

your server as a privileged user.
–  Example: Perhaps normal users aren't able to directly query your

database. But an attacker may find a flaw in your security letting
him run as an administrator and perform the query.

–  Once you're running as root,
You own the server.
You can do anything you want!

22

Cross-site scripting (XSS)
•  cross-site scripting: Causing one person's script code to be

executed when a user browses to another site.
–  Example: Visit google.com, but evil.com's JavaScript runs.

• How attack is performed:
–  Attacker finds unsecure code on target site.
–  Attacker uses hole to inject JavaScript into the page.
–  User visits page, sees malicious script code.

23

SQL Injection
• SQL injection:

Causing undesired SQL queries to be run on your database.

–  Often caused when untrusted input is pasted into a SQL query
 PHP: "SELECT * FROM Users WHERE name='$name';";

–  specify a user name of: x' OR 'a'='a
 SELECT * FROM Users WHERE name='x' OR 'a'='a';

Thinking like an attacker:
finding vulnerabilities

25

Panning for gold
• View Source, and look for:

–  HTML comments
–  script code
–  other sensitive information in code:

IP/email addresses, SQL queries, hidden fields,...

–  watch HTTP requests/responses
•  look for hidden pages, files, parameters to target

–  error messages sent to your browser by app
• 200: OK 400: Invalid request
• 403: Forbidden 404: File not found
• 500: Internal server error

26

Input forms
• Forms let users pass parameters to the web server.

•  Parameters are passed using GET or POST requests.
–  GET: parameters are contained in the request URL.

 http://www.google.com?q=Stephen+Colbert&lang=en

–  POST: parameters are contained in the HTTP packet header.
• harder for the user to see, but no more secure than GET

•  Forms provide a rich attack ground...

27

Form validation
• validation: Examining form parameters to make sure they are

acceptable before/as they are submitted.
–  nonempty, alphabetical, numeric, length, ...

–  client-side: HTML/JS checks values before request is sent.
–  server-side: JSP/Ruby/PHP/etc. checks values received.

• Some validation is performed by restricting the user's choices.
–  select boxes
–  input text boxes with
maxlength attribute

–  key event listeners that
erase certain key presses

28

User input attacks
• Bypassing client-side input restrictions and validation

–  maxlength limits on an input text field
–  choices not listed in a select box
–  hidden input fields
–  modifying or disabling client-side JavaScript validation code

29

Guessing files/directories
•  security through obscurity: Many reachable files/resources

are hidden only by the fact that there is no link to them.

•  Try common file/folder/commands to see what happens:
–  /etc/passwd , /etc/shadow , cat, ls, grep

–  guess file names based on others
• page11.php --> page12.php
• loginfailure.jsp --> loginsuccess.jsp
• accounts/fred.html --> accounts/sue.html

–  brute force / web spiders
–  port scanners

30

Other attacks
• Attacking GET parameters

• Attacking hidden input fields

• Attacking cookies

• Cross-site request forgery (CSRF)

•  ...

Android security risks

32

Android security risks
• What are some security risks you can think

of that can affect an Android phone?
–  What are actions a malicious app could take?

• Examples:
–  uses a bug or security vulnerability to gain ungranted permissions
–  shows the user unsolicited messages (especially commercial)
–  resists (or attempts to resist) the user's effort to uninstall it
–  attempts to automatically spread itself to other devices
–  hides its files and/or processes
–  discloses the user's private information to a third party w/o consent
–  destroys the user's data (or the device itself) without w/o consent
–  impersonates the user (such as by sending email or buying things)
–  drains the phone's battery, data bytes/minutes, SMS/MMS remaining
–  otherwise degrades the user's experience with the device

33

Android OS security
• The Android operating system provides security:

–  Unix-based file/directory permission model
–  process memory isolation and memory protection
–  filesystem encryption
–  per-app access to hardware devices
–  per-app restrictions on memory/CPU usage, other resources

• network/data connection
• camera
•  location (GPS) data
• bluetooth
• SMS/MMS
•  ...

–  DRM framework

34

Mobile app permissions
• Apps must declare which permissions they need

–  e.g. use internet; write to local files; look at contacts;
use Bluetooth; access GPS location; send SMS

–  user must manually give permission for actions

•  Fine-grained access control in Manifest XML file
–  File/URL-specific permissions

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.android.app.myapp" >
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 ...
</manifest>

35

Signed apps/stores
•  signed apps: Coded with a private developer key

–  On Android / iPhone, apps must be signed in market
–  manual approval reduces chance of rogue apps

–  any app bought in official App Store / Market is
generally thought of as having being audited
• Is this true for Apple store apps?
• Is this true for Google Play Market apps?
• App store users can rate the apps and comment

–  Do you feel that an app is more likely to be secure:
• If it is from a publisher/company you already know?
• If a friend of yours has it installed?
• If it costs money?

36

Problems with Android
•  Apps can ask for too many permissions.

–  Users don't really understand permissions.
–  Users are overwhelmed and just click "Yes"
–  Now the app can do almost anything.

•  Updates to an app can change its permissions.
–  example: recent Facebook app update
–  Users often click "Yes" if they already trust the app.
–  "privilege escalation"

•  Spammy apps
–  resist attempts to uninstall
–  show ads that are like system/OS UI
–  disclose or damage the user's personal information data
–  impersonates the user

37

Example attack
• Android 2.2 / 2.3 had vulnerabilities.

–  Browser could download a HTML page.
–  The page contains JS code.
–  The JS code can self-execute later

in a "local" context.
–  This has higher permissions and can

modify the local file system.

• App ABC stores sensitive data on the local file system.
–  The data is financially important.
–  It is saved as a file in plain-text.
–  The above malicious browser JS code can read and access it.

