
CSE 403
Lecture 9

Testing

Thanks to Michael Ernst and other past instructors of CSE 403 and CSE 331
http://www.cs.washington.edu/403/

Testing summary
•  Testing matters

–  You need to convince others that module works

•  Catch problems earlier
–  Bugs become obscure beyond the unit they occur in

•  Don't confuse volume with quality of test data
–  Can lose relevant cases in mass of irrelevant ones
–  Look for revealing subdomains

•  Choose test data to cover
–  Specification (black box testing)
–  Code (glass box testing)

•  Testing can't generally prove absence of bugs
–  But can increase quality and confidence

Ariane 5 rocket

•  The rocket self-destructed 37 seconds after launch
•  Reason: A control software bug that went undetected

–  Conversion from 64-bit floating point to 16-bit signed integer value had caused
an exception

–  The floating point number was larger than 32767 (max 16-bit signed integer)
–  Efficiency considerations had led to the disabling of the exception handler.

•  Program crashed means the rocket crashed
•  Total Cost: over $1 billion

Therac-25 radiation therapy machine

•  Excessive radiation killed patients (1985-87)
•  New design removed hardware interlocks that prevent the electron-

beam from operating in its high-energy mode. Now all the safety
checks are done in software.

•  The equipment control task did not properly synchronize with the
operator interface task, so that race conditions occurred if the
operator changed the setup too quickly.

•  This was missed during testing,
since it took practice before
operators were able to work
quickly enough for the problem
to occur.

•  Panama, 2000: At least 8 dead
•  Many more! (NYT 12/28/2010)

Mars Polar Lander

•  Legs deployed meant sensor signal falsely
indicated that the craft had touched down
(130 feet above the surface)

•  Then the descent engines shut down
prematurely

•  The error was traced to a single bad line of
software code.

•  NASA investigation panel blames for the
lander failure, “are well known as difficult
parts of the software-engineering process”

More examples
• Microsoft Zune's New Year Crash (2008)

–  iPhone alarm (2011)
•  Air-Traffic Control System in LA Airport (2004)
• Northeast Blackout (2003)
• USS Yorktown Incapacitated (1997)
• Denver Airport Baggage-handling System (1994)
• Mariner I space probe (1962)
•  AT&T Network Outage (1990)
•  Intel Pentium floating point divide (1993)
•  Prius brakes and engine stalling (2005)
•  Soviet gas pipeline (1982)

–  Iran centrifuges (2009)

Testing is for every system
•  Every little error adds up
•  Inadequate infrastructure for software testing costs the U.S. $22-$60

billion per year
•  Testing accounts for about half of software development costs.
•  Program understanding and debugging account for up to 70% of time

to ship a software product
•  Improvements in software testing infrastructure might save one-third

of the cost

•  Source: NIST Planning Report 02-3, 2002

Building Quality Software
•  What impacts software quality?
•  External

–  Correctness Does it do what it supposed to do?
–  Reliability Does it do it accurately all the time?
–  Efficiency Does it do with minimum use of resources?
–  Integrity Is it secure?

•  Internal
–  Portability Can I use it under different conditions?
–  Maintainability Can I fix it?
–  Flexibility Can I change it or extend it or reuse it?

•  Quality Assurance
–  The process of uncovering problems and improving the quality of software.
–  Testing is a major part of QA.

What Is Testing For?
•  Validation = reasoning + testing

–  Make sure module does what it is specified to do
–  Uncover problems, increase confidence

•  Two rules:
•  1. Do it early and do it often

–  Catch bugs quickly, before they have a chance to hide
–  Automate the process if you can

•  2. Be systematic
–  If you thrash about randomly, the bugs will hide in the corner until you're

gone

Phases of Testing
•  Unit Testing

–  Does each module do what it supposed to do?

•  Integration Testing
–  Do you get the expected results when the parts are put together?

•  Validation Testing
–  Does the program satisfy the requirements?

•  System Testing
–  Does it work within the overall system?

Unit Testing
•  A test is at the level of a method/class/interface

 Check if the implementation matches the specification.

•  Black box testing

–  Choose test data without looking at implementation

•  Glass box (white box) testing
–  Choose test data with knowledge of implementation

How is testing done?
•  Basic steps of a test

1) Choose input data/configuration
2) Define the expected outcome
3) Run program/method against the input and record the results
4) Examine results against the expected outcome

•  Testing can't generally prove absence of bugs
–  But can increase quality and confidence

What’s So Hard About Testing?

•  "just try it and see if it works...”
•  // requires: 1 ≤ x,y,z ≤ 10000
•  // effects: computes some f(x,y,z)
•  int proc1(int x, int y, int z)
• 

•  Exhaustive testing would require 1 trillion runs!
–  Sounds totally impractical – and this is a trivially small problem

•  Key problem: choosing test suite (set of partitions of inputs)
–  Small enough to finish quickly
–  Large enough to validate the program

sqrt example
• // throws: IllegalArgumentException if x<0
// returns: approximation to square root of x
public double sqrt(double x)

•  What are some values or ranges of x that might be worth probing?
•  x < 0 (exception thrown)
•  x ≥ 0 (returns normally)
•  around x == 0 (boundary condition)
•  perfect squares (sqrt(x) an integer), non-perfect squares
•  x < sqrt(x) and x > sqrt(x) – that's x < 1 and x > 1 (and x == 1)
•  Specific tests: say x = -1, 0, 0.5, 1, 4

Approach: Partition the Input Space

•  Ideal test suite:
–  Identify sets with same behavior
– Try one input from each set

•  Two problems
– 1. Notion of the same behavior is subtle

– Naive approach: execution equivalence
– Better approach: revealing subdomains

– 2. Discovering the sets requires perfect knowledge
– Use heuristics to approximate cheaply

Naive Approach: Execution Equivalence

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

 if (x < 0) return -x;
 else return x;
 }

All x < 0 are execution equivalent:

program takes same sequence of steps for any x < 0

All x ≥ 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite

Why Execution Equivalence Doesn't Work

Consider the following buggy code:
// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

 if (x < -2) return -x;
 else return x;
}

{-3, 3} does not reveal the error!

Two executions:	

	
x < -­‐‑2 	
 	
x ≥ -­‐‑2	

Three behaviors: 	
	

	
x < -­‐‑2 (OK) 	
x == -­‐‑2 or -­‐‑1 (bad) 	
 x ≥ 0 (OK)	

Heuristic: Revealing Subdomains

•  A subdomain is a subset of possible inputs

•  A subdomain is revealing for error E if either:
–  Every input in that subdomain triggers error E, or
–  No input in that subdomain triggers error E

•  Need test only one input from a given subdomain
–  If subdomains cover the entire input space, then we are guaranteed to

detect the error if it is present

•  The trick is to guess these revealing subdomains

Heuristics for Designing Test Suites

A good heuristic gives:
§  few subdomains
§  ∀ errors E in some class of errors,
–  high probability that some subdomain is revealing for E

•  Different heuristics target different classes of errors
–  In practice, combine multiple heuristics

Black Box Testing
•  Heuristic: Explore alternate paths through specification

–  Procedure is a black box: interface visible, internals hidden
•  Example

–  int max(int a, int b)
 // effects: a > b => returns a
 // a < b => returns b
 // a == b => returns a

–  3 paths, so 3 test cases:
 (4, 3) => 4 (i.e. any input in the subdomain a > b)
 (3, 4) => 4 (i.e. any input in the subdomain a < b)
 (3, 3) => 3 (i.e. any input in the subdomain a == b)

Black Box Testing: Advantages
•  Process is not influenced by component being tested

–  Assumptions embodied in code not propagated to test data.

•  Robust with respect to changes in implementation
–  Test data need not be changed when code is changed

•  Allows for independent testers
–  Testers need not be familiar with code

More Complex Example
•  Write test cases based on paths through the specification

–  int find(int[] a, int value) throws Missing
// returns: the smallest i such
// that a[i] == value
// throws: Missing if value is not in a

•  Two obvious tests:
 ([4, 5, 6], 5) => 1
 ([4, 5, 6], 7) => throw Missing

•  Have I captured all the paths?

•  Must hunt for multiple cases in effects or requires

([4, 5, 5], 5) => 1	

Heuristic: Boundary Testing
•  Create tests at the edges of subdomains

•  Why do this?
–  off-by-one bugs
–  forgot to handle empty container
–  overflow errors in arithmetic
–  aliasing

•  Small subdomains at the edges of the “main” subdomains have a high
probability of revealing these common errors

•  Also, you might have misdrawn the boundaries

Boundary Testing
•  To define the boundary, need a distance metric

–  Define adjacent points

•  One approach:
–  Identify basic operations on input points
–  Two points are adjacent if one basic operation apart

•  Point is on a boundary if either:
–  There exists an adjacent point in a different subdomain
–  Some basic operation cannot be applied to the point

•  Example: list of integers
–  Basic operations: create, append, remove
–  Adjacent points: <[2,3],[2,3,3]>, <[2,3],[2]>
–  Boundary point: [] (can’t apply remove integer)

Other Boundary Cases
•  Arithmetic

–  Smallest/largest values
–  Zero

•  Objects
–  Null
–  Circular list
–  Same object passed to multiple arguments (aliasing)

Boundary Cases: Arithmetic Overflow

• public int abs(int x)
•  // returns: |x|
•  Tests for abs

–  what are some values or ranges of x that might be worth probing?
•  x < 0 (flips sign) or x ≥ 0 (returns unchanged)
•  around x == 0 (boundary condition)
•  Specific tests: say x == -1, 0, 1

•  How about…
•  int x = Integer.MIN_VALUE; // this is -2147483648
 System.out.println(x<0); // true
 System.out.println(Math.abs(x)<0); // also true!

•  From Javadoc for Math.abs:
–  Note that if the argument is equal to the value of Integer.MIN_VALUE, the most

negative representable int value, the result is that same value, which is negative

Boundary Cases: Duplicates & Aliases

<E> void appendList(List<E> src, List<E> dest) {
// modifies: src, dest
// effects: removes all elements of src and
// appends them in reverse order to
// the end of dest

 while (src.size()>0) {
 E elt = src.remove(src.size()-1);
 dest.add(elt)
 }
}

•  What happens if src and dest refer to the same thing?
–  This is aliasing
–  It’s easy to forget!
–  Watch out for shared references in inputs

!
!

Clear (glass, white)-box testing
•  Goals:

–  Ensure test suite covers (executes) all of the program
–  Measure quality of test suite with % coverage

•  Assumption:
–  high coverage à few mistakes in the program
–  (Assuming no errors in test suite oracle (expected output).)

•  Focus: features not described by specification
–  Control-flow details
–  Performance optimizations
–  Alternate algorithms for different cases

Glass-box Motivation
•  There are some subdomains that black-box testing won't give:
•  boolean[] primeTable = new boolean[CACHE_SIZE];
•  boolean isPrime(int x) {
•  if (x>CACHE_SIZE) {
•  for (int i=2; i<x/2; i++) {
•  if (x%i==0) return false;
•  }
•  return true;
•  } else {
•  return primeTable[x];
•  }
•  }

•  Important transition around x == CACHE_SIZE

Glass Box Testing: Advantages
•  Finds an important class of boundaries

–  Yields useful test cases
•  Consider CACHE_SIZE in isPrime example

–  Need to check numbers on each side of CACHE_SIZE
• CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1

–  If CACHE_SIZE is mutable, we may need to test with different
CACHE_SIZEs

•  Disadvantages?
–  Tests may have same bugs as implementation

What is full coverage?
•  static int min (int a, int b) {
 int r = a;
 if (a <= b) {
 r = a;
 }
 return r;
}

•  Consider any test with a ≤ b (e.g., min(1,2))
–  It executes every instruction
–  It misses the bug

•  Statement coverage is not enough

Code coverage example

Path coverage example

Varieties of coverage
• Covering all of the program

–  Statement coverage
–  Branch coverage
–  Decision coverage
–  Loop coverage
–  Condition/Decision coverage
–  Path coverage

•  Limitations of coverage:
1.  100% coverage is not always a reasonable target

100% may be unattainable (dead code)
High cost to approach the limit

2.  Coverage is just a heuristic
We really want the revealing subdomains

increasing
number of
test cases
(more or
less)

Regression Testing
•  Whenever you find a bug

–  Store the input that elicited that bug, plus the correct output
–  Add these to the test suite
–  Verify that the test suite fails
–  Fix the bug
–  Verify the fix

•  Why is this a good idea?
•  Ensures that your fix solves the problem

–  Don’t add a test that succeeded to begin with!
•  Helps to populate test suite with good tests
•  Protects against reversions that reintroduce bug

–  It happened at least once, and it might happen again

Rules of Testing
•  First rule of testing: Do it early and do it often

–  Best to catch bugs soon, before they have a chance to hide.
–  Automate the process if you can
–  Regression testing will save time.

•  Second rule of testing: Be systematic
–  If you randomly thrash, bugs will hide in the corner until you're gone
–  Writing tests is a good way to understand the spec

•  Think about revealing domains and boundary cases
•  If the spec is confusing à write more tests

–  Spec can be buggy too
•  Incorrect, incomplete, ambiguous, and missing corner cases

–  When you find a bug à write a test for it first and then fix it

Testing summary
•  Testing matters

–  You need to convince others that module works

•  Catch problems earlier
–  Bugs become obscure beyond the unit they occur in

•  Don't confuse volume with quality of test data
–  Can lose relevant cases in mass of irrelevant ones
–  Look for revealing subdomains

•  Choose test data to cover
–  Specification (black box testing)
–  Code (glass box testing)

•  Testing can't generally prove absence of bugs
–  But can increase quality and confidence

