
CSE 403
Lecture 8

UML Class Diagrams

Thanks to Marty Stepp, Michael Ernst, and other past instructors of CSE 403
http://www.cs.washington.edu/403/

See also: Object-Oriented Design Heuristics by Arthur J. Riel (Addison-Wesley

Professional, 1996), ISBN-13: 978-0-201-63385-6

2

How do we design classes?
•  class identification from project spec / requirements

–  nouns are potential classes, objects, fields
–  verbs are potential methods or responsibilities of a class

• CRC card exercises
–  write down classes' names on index cards
–  next to each class, list the following:

• responsibilities: problems to be solved; short verb phrases
• collaborators: other classes that are sent messages by this class

(asymmetric)

• UML
–  class diagrams (today)
–  sequence diagrams
–  ...

3

Introduction to UML
• Unified Modeling Language (UML): depicts an OO system

–  programming languages are not abstract enough for OO design
–  UML is an open standard; lots of companies use it

• many programmers either know UML or a "UML-like" variant

• UML is ...
–  a descriptive language: rigid formal syntax (like programming)
–  a prescriptive language: shaped by usage and convention

–  UML has a rigid syntax, but some don't follow it religiously
–  it's okay to omit things from UML diagrams if they aren't needed

by team/supervisor/instructor

4

Diagram of one class
•  class name in top of box

–  write <<interface>> on top of interfaces' names
–  use italics for an abstract class name

•  attributes
–  should include all fields of the object
–  also includes derived "properties"

•  operations / methods
–  may omit trivial (get/set) methods

•  but don't omit any methods from an interface!

–  should not include inherited methods

5

Class attributes
•  attributes (fields, instance variables)

–  visibility name : type [count] = defaultValue

–  visibility: + public
 # protected
 - private
 ~ package (default)
 / derived

–  underline static attributes

–  derived attribute: not stored, but can
be computed from other attribute values

–  attribute example:
- balance : double = 0.00

6

Class operations / methods
•  operations / methods

–  visibility name (parameters) : returnType

–  underline static methods
–  parameter types listed as (name: type)
–  omit returnType on constructors and

when return is void

–  method example:

+ distance(p1: Point, p2: Point): double

7

Inheritance relationships
–  hierarchies drawn top-down with arrows

pointing upward to parent

–  line/arrow styles differ based on parent:
•  class : solid, black arrow
•  abstract class : solid, white arrow
•  interface : dashed, white arrow

–  we often don't draw trivial / obvious
relationships, such as drawing the class
Object as a parent

8

Associational relationships
1. multiplicity (how many are used)

•  * ⇒ 0, 1, or more
•  1 ⇒ 1 exactly
•  2..4 ⇒ between 2 and 4, inclusive
•  3..* ⇒ 3 or more

2. name (what relationship the objects have)
3. navigability (direction)

B contains A

9

Multiplicity
•  one-to-one

–  each student must have exactly one ID card

•  one-to-many
–  a RectangleList can contain 0, 1, 2, ... rectangles

The relationships on the original slides were drawn backwards
These show the correct diamond placement.

Student IDCard 1 1

Rectangle RectangleList
1 *

10

Association types
• aggregation: "is part of"

–  clear white diamond

•  composition: "is entirely made of"
–  stronger version of aggregation
–  the parts live and die with the whole
–  black diamond

• dependency: "uses temporarily"
–  dotted line or arrow
–  often is an implementation

detail, not an intrinsic part of
that object's state

 1
 1

aggregation

Car

Engine

Lottery
Ticket

Random

dependency

Page

Book

composition

 *
 1

These relationships were
drawn OK

11

Class design exercise
• Consider this Texas Hold 'em poker game system:

–  2 to 8 human or computer players
–  Each player has a name and stack of chips
–  Computer players have a difficulty setting: easy, medium, hard
–  Summary of each hand:

• Dealer collects ante from appropriate players, shuffles the deck, and deals
each player a hand of 2 cards from the deck.

• A betting round occurs, followed by dealing 3 shared cards from the deck.
• As shared cards are dealt, more betting rounds occur, where each player can

fold, check, or raise.
• At the end of a round, if more than one player is remaining, players' hands

are compared, and the best hand wins the pot of all chips bet.

–  What classes are in this system? What are their responsibilities?
Which classes collaborate?

–  Draw a class diagram for this system. Include relationships
between classes (generalization and associational).

12

Poker class diagram

Class diagrams show
the responsibilities and
relationships of each
class, but not behavior.

Relationships marked

have the diamond
at the wrong end

on this diagram

13

Class diag. pros/cons
• Class diagrams are great for:

–  discovering related data and attributes
–  getting a quick picture of the important entities in a system
–  seeing whether you have too few/many classes
–  seeing whether the relationships between objects are too

complex, too many in number, simple enough, etc.
–  spotting dependencies between one class/object and another

• Not so great for:
–  discovering algorithmic (not data-driven) behavior
–  finding the flow of steps for objects to solve a given problem
–  understanding the app's overall control flow (event-driven? web-

based? sequential? etc.)

14

Qualities of modular software

•  decomposable
–  can be broken down into pieces

•  composable
–  pieces are useful and can be combined

• understandable
–  one piece can be examined in isolation

• has continuity
–  reqs. change affects few modules

•  protected / safe
–  an error affects few other modules

15

Heuristics 2 quick reference
•  Heuristic 2.1: All data should be hidden within its class.
•  Heuristic 2.2: Users of a class must be dependent on its public interface, but a class should

not be dependent on its users.
•  Heuristic 2.3: Minimize the number of messages in the protocol of a class.
•  Heuristic 2.4: Implement a minimal public interface that all classes understand.
•  Heuristic 2.5: Do not put implementation details such as common-code private functions into

the public interface of a class.
•  Heuristic 2.6: Do not clutter the public interface of a class with items that users of that class

are not able to use or are not interested in using.
•  Heuristic 2.7: Classes should only exhibit nil or export coupling with other classes, that is, a

class should only use operations in the public interface of another class or have nothing to do
with that class.

•  Heuristic 2.8: A class should capture one and only one key abstraction.
•  Heuristic 2.9: Keep related data and behavior in one place.
•  Heuristic 2.10: Spin off non-related behavior into another class (i.e., non-communicating

behavior).
•  Heuristic 2.11: Be sure the abstractions that you model are classes and not simply the roles

objects play.
•  from Object-Oriented Design Heuristics by Arthur J. Riel (Addison-Wesley Professional, 1996), ISBN-13: 978-0-201-63385-6

16

Interface/implementation
• public interface: visible data/behavior of an object

–  can be seen and executed externally

• private implementation: internal data/methods in an object
–  helps implement the public interface; cannot be directly accessed

•  client: code that uses your class/subsystem

–  Example: radio
• public interface is the speaker, volume buttons, station dial
• private implementation is the guts of the radio; the transistors,

capacitors, frequencies, etc. that user should not see

17

Poker design question 1
•  Poker Deck class stores a list of cards; the game needs to be

able to shuffle and draw the top card.

–  We give the Deck class the following methods:
add(Card), add(index, Card), getCard(int), indexOf(Card),
remove(index), shuffle(), drawTopCard(), etc.

–  What's wrong with this design?

–  Heuristic 2.3: Minimize the # of messages in the protocol of a class.
–  Heuristic 2.5: Do not put implementation details such as common-code

private functions into the public interface of a class.
–  Heuristic 2.6: Do not clutter the public interface of a class with items

that users of that class are not able to use or are not interested in using.

18

Minimizing public interface
–  Make a method private unless it needs to be public.

–  Supply getters (not setters) for fields if you can get away with it.
• example: Card object with rank and suit (get-only)

–  In a class that stores a data structure, don't replicate that
structure's entire API; only expose the parts clients need.
• example: If PokerGame has an inner set of Players, supply just an
iterator or a getPlayerByName(String) method

–  Use a Java interface with only the needed methods, and then
refer to your class by the interface type in client code.

19

Poker design question 2
•  Proposed fields in various poker classes:

–  A Hand stores 2 cards and the Player whose hand it is.
–  A Player stores his/her Hand, last bet, a reference to the other
Players in the game, and a Deck reference to draw cards.

–  The PokerGame stores an array of all Players, the Deck, and
an array of all players' last bets.

–  What's wrong with this design?

20

Cohesion and coupling
•  cohesion: how complete and related things are in a class

 (a good thing)

•  coupling: when classes connect to / depend on each other
 (too much can be a bad thing)

–  Heuristic 2.7: Classes should only exhibit nil or export coupling
with other classes; that is, a class should only use operations in
the public interface of another class or have nothing to do with
that class.

•  (in other words, minimize unnecessary coupling)

21

Reducing coupling
–  combine 2 classes if they don't represent a whole abstraction

• example: Bet and PlayRound

–  make a coupled class an inner class
• example: list and list iterator; binary tree and tree node
• example: GUI window frame and event listeners

–  provide simpler communication between subsystems
• example: provide methods (newGame, reset, ...) in PokerGame so

that clients do not need to manually refresh the players, bets, etc.

22

Heuristics 3 quick reference
•  Heuristic 3.1: Distribute system intelligence horizontally as uniformly as possible, that is, the

top-level classes in a design should share the work uniformly.
•  Heuristic 3.2: Do not create god classes/objects in your system. Be very suspicious of a

class whose name contains Driver, Manager, System, or Subsystem.
•  Heuristic 3.3: Beware of classes that have many accessor methods defined in their public

interface.
•  Heuristic 3.4: Beware of classes that have too much noncommunicating behavior.
•  Heuristic 3.5: In applications that consist of an object-oriented model interacting with a user

interface, the model should never be dependent on the interface.
•  Heuristic 3.6: Model the real world whenever possible.
•  Heuristic 3.7: Eliminate irrelevant classes from your design.
•  Heuristic 3.8: Eliminate classes that are outside the system.
•  Heuristic 3.9: Do not turn an operation into a class. Be suspicious of any class whose name

is a verb or is derived from a verb, especially those that have only one piece of meaningful
behavior (don't count set, get, print).

•  Heuristic 3.10: Agent classes are often placed in the analysis model of an application.
During design time, many agents are found to be irrelevant and should be removed.

•  from Object-Oriented Design Heuristics by Arthur J. Riel (Addison-Wesley Professional, 1996), ISBN-13: 978-0-201-63385-6

23

Poker design question 3
• Our PokerGame class:

–  stores all the players
–  stores an array of cards representing the card deck
–  stores all bets and money
–  does the logic for each betting round
–  performs the AI for each computer player's moves

–  What's wrong with this design?

PokerGame

24

God classes
• god class: a class that hoards too much

of the data or functionality of a system.

–  Heuristic 2.8: A class should capture one and only one key abstraction.

–  Heuristic 3.2: Do not create god classes/objects in your system. Be
very suspicious of a class whose name contains Driver, Manager,
System, or Subsystem.

–  Heuristic 3.4: Beware of classes that have too much non-
communicating behavior, that is, methods that operate on a proper
subset of the data members of a class. God classes often exhibit much
non-communicating behavior.

25

Poker design question 4
• Each new game round, the PokerGame wants to deal cards to

each player. During the game, players draw additional cards.

–  We will create a Dealer class that the PokerGame asks to deal
the cards to every player.

–  Player objects will store a reference to the Dealer.
During the game, they will talk to the dealer to draw their cards.
The Dealer will notify the Game once all players have drawn.

–  What's wrong with this design?

26

Poker design question 5
–  Cards belong to one of four suits. So we have created classes
Club, Diamond, Heart, Spade class to represent each suit.

–  In each game round, one player is the dealer and one is the first
better. Also each turn there is a next better waiting. So we have
created classes Dealer, NextBetter, FirstBetter.

–  Every game has several betting rounds, each round consisting of
several bets. So we have created classes Bet and
CurrentBettingRound.

–  What's wrong with this design?

27

Proliferation of classes
• proliferation of classes: too many classes that are too small

in size/scope; makes the system hard to use, debug, maintain

–  Heuristic 2.11: Be sure the abstractions that you model are classes
and not simply the roles objects play.

–  Heuristic 3.7: Eliminate irrelevant classes from your design.
•  often have only data and get/set methods; or only methods, no real data

–  Heuristic 3.8: Eliminate classes that are outside the system.
•  don't model a Blender just because your company sells blenders;

don't necessarily model a User just because the system is used by somebody

–  Heuristic 3.9: Do not turn an operation into a class.
•  Be suspicious of any class whose name is a verb, especially those that have only

one piece of meaningful behavior. Move the behavior to another class.

28

Poker design question 6
• A player may bet only as much $ as they have; and if a prior

player has made a "call", the current player cannot raise.

–  Where should these policies be enforced?

–  Design 1: Player class remembers whether that player is in the
game, what that player's current bet is, whether it is his turn, etc.
• Player checks whether a "call" has been made.
• Player checks whether he/she has enough to make a given bet.

–  Design 2:
• PokerGame class remembers who is in the game.
• Betting class remembers every player's current bets, checks $.
• Dealer class remembers whose turn it is.

29

Related data and behavior
–  Heuristic 2.9: Keep related data and behavior in one place.

• avoids having to change two places when one change is needed

–  Heuristic 3.3: Beware of classes that have many accessor
methods ... [This] implies that related data and behavior are not
being kept in one place.
• "policy" behavior should be where that policy is enforced/enacted

