
CSE 403
Lecture 7

Software Architecture

Thanks to Michael Ernst, Marty Stepp, and other past instructors of CSE 403
http://www.cs.washington.edu/403/

2

From requirements to code

 Requirements

 Code

Software Architecture
Provides a high-level
framework to build and
evolve the system

3

Why SW architecture?

• "Good software architecture makes the rest of the
project easy."
–  Steve McConnell, Survival Guide

• "There are two ways of constructing a software
design: one way is to make it so simple that there are
obviously no deficiencies; the other is to make it so
complicated that there are no obvious deficiencies."
–  C.A.R. Hoare (1985)

4

Box-and-arrow diagrams

Very common and hugely valuable.
But, what do these represent:
•  a box? Adjacent boxes? Nested boxes?
•  a line? An arrow? Dashed or solid?
•  a layer?

5

Components and connectors

• Components define the basic computations comprising the
system and their behaviors
–  abstract data types, filters, etc.

• Connectors define the interconnections between components
–  procedure call, event announcement,

asynchronous message sends, etc.

• The line between them may be fuzzy at times
–  Ex: A connector might (de)serialize data, but can it perform other,

richer computations?

6

UML diagrams

• UML = universal modeling language
–  http://www.uml.org/

• A standardized way to describe (draw) architecture
–  Also implementation details such as sub-classing, uses

(dependences), and much more

• Widely used in industry

7

An architecture helps with
•  System understanding: interactions between modules

•  Reuse: high-level view shows opportunity for reuse

•  Construction: breaks development down into work items; provides
a path from requirements to code

•  Evolution: high-level view shows evolution path

•  Management: helps understand work items and track progress

•  Communication: provides vocabulary; a picture says 1000 words

8

A good architecture

• Satisfies functional and performance requirements

• Manages complexity

• Accommodates future change

•  Is concerned with
–  reliability, safety, understandability, compatibility, robustness, …

9

Divide and conquer
• Benefits of decomposition:

–  Decrease size of tasks
–  Support independent testing and analysis
–  Separate work assignments
–  Ease understanding

• Use of abstraction leads to modularity
–  Implementation techniques: information hiding, interfaces

• To achieve modularity, you need:
–  Strong cohesion within a component
–  Loose coupling between components
–  And these properties should be true at each level

10

Qualities of modular software

•  decomposable
–  can be broken down into pieces

•  composable
–  pieces are useful and can be combined

•  understandable
–  one piece can be examined in isolation

•  has continuity
–  change in requirements affects few modules

•  protected / safe
–  an error affects few other modules

11

Interface and implementation

• public interface: data and behavior of the object that can be
seen and executed externally by "client" code

• private implementation: internal data and methods in the
object, used to help implement the public interface, but cannot
be directly accessed

•  client: code that uses your class/subsystem

Example: radio
–  public interface is the speaker, volume buttons, station dial
–  private implementation is the guts of the radio; the transistors,

capacitors, voltage readings, frequencies, etc. that user should
not see

12

Properties of architecture

• Coupling
–  Loose better than tight

• Cohesion
–  Strong better than week

• Style conformity

• Matching

13

Loose coupling
•  Coupling: the kind and quantity of interconnections among

modules

•  Modules that are loosely coupled (or uncoupled) are better than
those that are tightly coupled

•  The more tightly coupled two modules are, the harder it is to

work with them separately
–  For example, consider testing. To test tightly coupled modules,

both need to be in place; otherwise, they could be tested
independently.

14

Tightly or loosely coupled?

User Interface Graphics

Data Storage
Application Level Classes

Business Rules Enterprise Level Tools

-End1

*

-End2

*-End3

*

-End4*

-End5

*

-End6

*

-End7*

-End8*

-End9*

-End10

*

-End11*

-End12*

-End13

*

-End14*

-End15

*

-End16

*

-End17

*

-End18

*

-End19*

-End20*

-End21

*

-End22

*

-End23*
-End24*

-End25*
-End26*

How many modules are affected if we remove one component?

15

Tightly or loosely coupled?

User Interface Graphics

Data Storage Application Level Classes

Business Rules Enterprise Level Tools

-End1

*

-End2

*

-End3*

-End4

*

-End5*

-End6*

-End9

*

-End10

*

-End11

*

-End12

*

-End13*

-End14*

-End15*

-End16*

-End7*

-End8 *

Compare the number of connections between modules for this diagram
versus the diagram on the previous slide.

16

Strong cohesion
•  Cohesion: how closely the operations in a module are related

•  Tight relationships improve clarity and understanding

•  Classes with good abstraction usually have strong cohesion

17

Strong or weak cohesion?
class Employee {

public:
 …
 FullName GetName() const;
 Address GetAddress() const;
 PhoneNumber GetWorkPhone() const;
 …
 bool IsJobClassificationValid(JobClassification jobClass);
 bool IsZipCodeValid (Address address);
 bool IsPhoneNumberValid (PhoneNumber phoneNumber);
 …
 SqlQuery GetQueryToCreateNewEmployee() const;
 SqlQuery GetQueryToModifyEmployee() const;
 SqlQuery GetQueryToRetrieveEmployee() const;
 …
}

No logical connection between employees and
routines that check zip codes, etc.
SQL details are lower level and break abstraction

18

Architectural style

• Defines the vocabulary of components and connectors for a
family (style)

• Constraints on the elements and their combination
–  Topological constraints (no cycles, register/announce

relationships, etc.)
–  Execution constraints (timing, etc.)

• By choosing a style, one gets all the known properties of that
style (for any architecture in that style)
–  Ex: performance, lack of deadlock, ease of making particular

classes of changes, etc.

19

Styles: not just boxes and arrows

• Consider pipes & filters, for example (Garlan and Shaw)
–  Pipes must compute local transformations
–  Filters must not share state with other filters
–  There must be no cycles

•  If these constraints are violated, it’s not a pipe & filter system
–  One can’t tell this from a picture
–  One can formalize these constraints

scan parse optimize generate

20

The design and the reality

• The code is often less clean than the design

• The design is still useful
–  communication among team members
–  selected deviations can be explained more concisely and

with clearer reasoning

21

Interface mismatch

• Mars orbiter loss
NASA lost a 125 million Mars orbiter because one engineering team
used metric units while another used English units for a key
spacecraft operation

22

Views
• A view illuminates a set of top-level design decisions

–  how the system is composed of interacting parts
–  where are the main pathways of interaction
–  key properties of the parts
–  information to allow high-level analysis and appraisal

23

Importance of views
Multiple views are needed to understand the different

dimensions of systems [Grady Booch]

Functional
Requirements

Performance
(execution)
Requirements

Packaging
Requirements

Installation
Requirements

24

Web application (client-server)

[Booch]

25

manipulates

Model-View-Controller

Separates:

•  the application object
(model)

•  the way it is
represented to the user
(view)

•  the way in which the
user controls it
(controller)

User

Model

Controller View

Application

sees uses

updates

26

Pipe and filter

Filter – performs computation on the data

Pipe – passes the data

,,,

•  Each stage of the pipeline acts independently of the
others.

•  Process-oriented view (execution).

 top | grep $USER | grep acrobat

27

Blackboard architectures

•  The knowledge sources: separate,
independent units of application
dependent knowledge. No direct
interaction among knowledge sources

•  The blackboard data structure:
problem-solving state data. Knowledge
sources make changes to the
blackboard that lead incrementally to a
solution to the problem.

•  Control: driven entirely by state of
blackboard. Knowledge sources
respond opportunistically to changes in
the blackboard.

Blackboard systems have traditionally been used for applications requiring
complex interpretations of signal processing, such as speech and pattern
recognition.

