CSE 403
Lecture 7

Software Architecture

Thanks to Michael Ernst, Marty Stepp, and other past instructors of CSE 403
http://www.cs.washington.edu/403/

From requirements to code

=

Provides a high-level
framework to build and
evolve the system

Why SW architecture?

¢ "Good software architecture makes the rest of the
project easy."
— Steve McConnell, Survival Guide

e "There are two ways of constructing a software
design: one way is to make it so simple that there are
obviously no deficiencies; the other is to make it so
complicated that there are no obvious deficiencies."

— C.A.R. Hoare (1985)

Box-and-arrow diagrams

..... -, Lagerd Parallel application

R ‘\\ Processor MPICH
----- ()0 e GM [FM | TCP /1P
----- (7)Gt (o Yo (0o Yo e e Myrinet | Fast Ethernet
----- * - ‘_.’,’ ’ Data Flow
_____ w(=) SEm S Very common and hugely valuable.

But, what do these represent:

e a box? Adjacent boxes? Nested boxes?
e a line? An arrow? Dashed or solid?

e alayer?

Fig3. Core’s architecture

Table

Legend:
Component

=== (Connector
| Communication
Link

Requests >

<]Not£ﬁca1iom;

Components and connectors

e Components define the basic computations comprising the
system and their behaviors

— abstract data types, filters, etc.

e Connectors define the interconnections between components

— procedure call, event announcement,
asynchronous message sends, etc.

e The line between them may be fuzzy at times

— Ex: A connector might (de)serialize data, but can it perform other,
richer computations?

UML diagrams

e UML = universal modeling language
— http://www.uml.org/

e A standardized way to describe (draw) architecture

— Also implementation details such as sub-classing, uses
(dependences), and much more

e Widely used in industry

An architecture helps with

o System understanding: interactions between modules
e Reuse: high-level view shows opportunity for reuse

e Construction: breaks development down into work items; provides
a path from requirements to code

e Evolution: high-level view shows evolution path
e Management: helps understand work items and track progress

o Communication: provides vocabulary; a picture says 1000 words

A good architecture

e Satisfies functional and performance requirements
e Manages complexity
e Accommodates future change

e Is concerned with
— reliability, safety, understandability, compatibility, robustness, ...

Divide and conquer

e Benefits of decomposition:
— Decrease size of tasks
— Support independent testing and analysis
— Separate work assignments
— Ease understanding

e Use of abstraction leads to modularity
— Implementation techniques: information hiding, interfaces

e To achieve modularity, you need:
— Strong cohesion within a component
— Loose coupling between components
— And these properties should be true at each level

Qualities of modular software

e decomposable
— can be broken down into pieces

e composable
— pieces are useful and can be combined

e understandable
— one piece can be examined in isolation

e has continuity
— change in requirements affects few modules

e protected / safe
— an error affects few other modules

Interface and implementation

e public interface: data and behavior of the object that can be
seen and executed externally by "client" code

e private implementation: internal data and methods in the
object, used to help implement the public interface, but cannot
be directly accessed

e client: code that uses your class/subsystem

Example: radio
— public interface is the speaker, volume buttons, station dial

— private implementation is the guts of the radio; the transistors,
capacitors, voltage readings, frequencies, etc. that user should
not see

11

Properties of architecture

e Coupling
— Loose better than tight

e Cohesion
— Strong better than week

e Style conformity

e Matching

12

Loose coupling

« Coupling: the kind and quantity of interconnections among
modules

* Modules that are loosely coupled (or uncoupled) are better than
those that are tightly coupled

* The more tightly coupled two modules are, the harder it is to
work with them separately

— For example, consider testing. To test tightly coupled modules,
both need to be in place; otherwise, they could be tested
independently.

13

Tightly or loosely coupled?

User Interface| __ |Graphics| ™
-End6
-End3 * * |
* -End16
% E:]m\—.Emm;— F‘ -End23
“En | End26 * | -End24
-End4 . .
Ends Application Level Classes

Data Storage-—

-End13
Ends —— y N * -End19
Endi2) ppgqg * | -Ends End20
o - -End15 *
Business Rules — |Enterprise Level Tools -
o -End22

Endi?Z

How many modules are affected if we remove one component?
14

Tightly or loosely coupled?

User Interface| ==« |Graphics

-End5
* -End3

-End6

Data Storage| == |Application Level Classes

*

-End15 * -End13
-End7

End16 -End14

Business Rules| ™" Enterprise Level Tools -

-End4

-End8

Compare the number of connections between modules for this diagram
versus the diagram on the previous slide. 15

Strong cohesion

« Cohesion: how closely the operations in a module are related
 Tight relationships improve clarity and understanding

» Classes with good abstraction usually have strong cohesion

16

Strong or weak cohesion?

No logical connection between employees and
routines that check zip codes, etc.
public: SQL details are lower level and break abstraction

class Employee {

FullName GetName() const;

Address GetAddress() const;
PhoneNumber GetWorkPhone() const;

Béol IsJobClassificationValid(JobClassification jobClass);

bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);

.éqIQuery GetQueryToCreateNewEmployee() const;

SqlQuery GetQueryToModifyEmployee() const;
SqlQuery GetQueryToRetrieveEmployee() const;

17

Architectural style

e Defines the vocabulary of components and connectors for a
family (style)

e Constraints on the elements and their combination

— Topological constraints (no cycles, register/announce
relationships, etc.)

— Execution constraints (timing, etc.)

e By choosing a style, one gets all the known properties of that
style (for any architecture in that style)

— Ex: performance, lack of deadlock, ease of making particular
classes of changes, etc.

18

Styles: not just boxes and arrows

e Consider pipes & filters, for example (Garlan and Shaw)
— Pipes must compute local transformations
— Filters must not share state with other filters
— There must be no cycles

o If these constraints are violated, it's not a pipe & filter system
— One can't tell this from a picture
— One can formalize these constraints

scan —) parse) optimize P generate

19

The design and the reality

e The code is often less clean than the design

e The design is still useful

— communication among team members

— selected deviations can be explained more concisely and
with clearer reasoning

20

Interface mismatch

e Mars orbiter loss

NASA lost a 125 million Mars orbiter because one engineering team
used metric units while another used English units for a key
spacecraft operation

21

TS

e A view illuminates a set of top-level design decisions
— how the system is composed of interacting parts
— where are the main pathways of interaction
— key properties of the parts
— information to allow high-level analysis and appraisal

22

Importance of views

Multiple views are needed to understand the different
dimensions of systems [Grady Booch]

Functional
Requirements

Performance
(execution)
Requirements

\
e

Design View

Classes, Interfaces, | "
\Collaborations

Process View

\Active Classes

p-

- . View

;)
b

’

'
|
-

Implementation

" Deployment

View

Nodes/

Packaging
Requirements

Installation
Requirements

23

Web application (client-server)

Web Browser

[Booch]

24

Model-View-Controller

updates M manipulates

Application

Separates:

» the application object
(model)

« thewayitis
represented to the user
(view)

« the way in which the
user controls it
(controller)

25

Pipe and filter

Pipe — passes the data

Q:% top | grep $USER | grep acrobat :>©

/

Filter — performs computation on the data

« Each stage of the pipeline acts independently of the
others.
* Process-oriented view (execution).

26

Blackboard architectures

e The knowledge sources: separate,

independent units of application
dependent knowledge. No direct
interaction among knowledge sources

The blackboard data structure:
problem-solving state data. Knowledge
sources make changes to the
blackboard that lead incrementally to a
solution to the problem.

Control: driven entirely by state of
blackboard. Knowledge sources
respond opportunistically to changes in
the blackboard.

Simple Blackboard

Knowledge
Source

Blackboard T -

Knowledge
Source

Knowledge
Source

Blackboard systems have traditionally been used for applications requiring
complex interpretations of signal processing, such as speech and pattern

recognition.

27

