CSE 403
Lecture 2

Software Lifecycle Models

Thanks to Marty Stepp, Michael Ernst, and other past instructors of CSE 403
http://www.cs.washington.edu/403/

Lecture outline

e The software lifecycle
— evaluating models

e Lifecycle models
— code-and-fix
— waterfall
— spiral
— evolutionary prototyping
— staged delivery
— design-to-* (schedule, tools, etc.)

e What is a software lifecycle model? When and why should we
use such models?

e How do we decide which model is the “best” one to use?

e Briefly describe each of these models:

— code-and-fix, waterfall, spiral, evolutionary prototyping, staged
delivery, design-to-schedule, etc.

e \What are some benefits and drawbacks of each model?

How complex is software?

e Measures of complexity:

— lines of code
e Windows Server 2003: 50 MSLoC
e Debian 5.0: 324 MSLoC (61 years to type at 50wpm!)

— number of classes

— number of modules

— module interconnections and dependencies
— time to understand

— # of authors

— ... many more

Ad-hoc development

e ad-hoc development: no formal process (aka “code and fix")
— Sounds great! No learning required.

e drawbacks?
— some important actions (design, testing) may go ignored
— not clear when to start or stop doing each task
— does not scale well to multiple people
— not easy to review or evaluate one's work
— code didn't match user's needs (no requirements!)
— code was not planned for modification, not flexible

e Key observation: The later a problem is found, the more
expensive it is to fix.

The "Software Lifecycle”

o software lifecycle: The entire process of creating a software
product from an initial concept until the last user stops using it.

— often divided into “phases” although the ordering may vary:
e Requirements Analysis & Specification
e High-level (Architectural) Design
e Detailed (Object-oriented) Design
e Implementation, Integration, Debugging
e Testing, Profiling, Quality Assurance
e Operation and Maintenance
e other possibilities: Risk Assessment, Prototyping

— goals of each phase:
e mark out a clear set of steps to perform
e produce a tangible document or item (aka “artifact” or “deliverable”)
e allow for review of work
e specify actions to perform in the next phase

Some lifecycle models

o code-and-fix: write some code, debug it, repeat (i.e., ad-hoc)
o waterfall: standard phases (req., design, code, test) in order
o spiral: assess risks at each step; do most critical action first

e evolutionary prototyping: build an initial small requirement
spec, code it, then "evolve" the spec and code as needed

e staged delivery: build initial requirement specs for several
releases, then design-and-code each in sequence

e agile development: iterative, adaptive, incremental
improvement done by self-organizing cross-functional teams

7

Benefits/limits of models

e benefits of models & F

— structures workflow, decomposes workflow, helps us
understand/manage process

e limitations of models © @
— can lead to compromises and artificial constraints
— risk of overemphasizing process (not the end in itself)

e ways of evaluating models &L

— risk management, quality/cost control, predictability,
visibility of progress, customer involvement/feedback

. <
requirements

verify

__ reqg. change

e benefits?

A

v

design

S
!

verify

[

implement

test

— formal, standard; specific phases with clear goals
— clear divisions between phases
— good feedback loops between adjacent phases
— supports inexperienced teams

operations

\ 4

retirement

Drawbacks of waterfall

) e e] reg. change
requirements x
veri > !
fy Y (o[S{ oo I D
Veri > Lo
fy 3 | implement ...
test
operations
e drawbacks? retirement

— assumes requirements will be clear and well-understood
— requires a lot of planning up front (not always easy)
— rigid, linear; not adaptable to change in the product
— costly to “swim upstream” back to a previous phase

— nothing to show until almost done ("we're 90% done, I swear!”) i
1

Barry Boehm, USC
e steps taken at each loop:

— determine objectives
and constraints

— identify risks

— evaluate options to
resolve risks

— develop and verify deliverables

e benefits?

— provides early indication of unforeseen problems
— always addresses the biggest risk first

— accommodates changes, growth

— eliminates errors and unattractive choices early

Integration

and test plan | and ver fication,

11

Barry Boehm, USC Curmletivg cost
e steps taken at each loop:

— determine objectives
and constraints

— identify risks

— evaluate options to
resolve risks

— develop and verify deliverables

e drawbacks?
— relies on developers to have risk-assessment expertise

— perhaps over-focuses on risk and “putting out fires”; other
features may go ignored because they are not “risky” enough

— complex; how do you actually follow this?
— works poorly when bound to an inflexible contract 12

Evolutionary prototyping

requirements

arch. design

verify

e build initial requirements, design/code it, “evolve” as needed

e benefits?

— produces steady signs of progress, builds customer confidence
— useful when requirements are not well known or change rapidly

v

verify

for each build:

,| detailed design,
implement,

test, deliver

operations

y

A

retirement

— customer involvement (*"What do you think of this version?”)

13

Drawbacks of evol. proto.

requirements

arch. design

verify

e drawbacks?

v

verify

for each build:

,| detailed design,
implement,

test, deliver

operations

A

y

— requires close customer involvement
— assumes user's initial spec will be flexible

— unclear how much iteration/time will be needed to finish
¢ hard to estimate schedule or feature set

— fails for separate pieces that must then be integrated
— temporary fixes become permanent constraints

retirement

— bridging; new software trying to gradually replace old

14

Staged delivery

e Waterfall-like e
beginning | freauirment)

Requirements
Analvsis

e Short release cycles C
.arcggféEQ{

i
§
‘—{Smge 1: Detailed design. code. debug, test. and deliven}

[Stage 2: Detailed design. code. debug. test. and de}iverﬂ
Y
4

o benefltS? [Stage n: Derailed design. code. debug, test. and deliver}]

— can ship at end of any release cycle during implementation

— from the outside (to customers) it looks like a successful delivery
even if it is not the final goal the team aimed for

— intermediate deliveries show progress and lead to feedback
— problems visible earlier due to earlier integration

15

Drawbacks of staged delivery

Software ' .
Concept |
! \

Requirements
Analvsis

Architectural '
Design
e drawbacks? ng

. R e q u | res tl g ht Coor d | n atl on ‘—{Srage 1: Detailed design. cclde, debug, test. and deh\-enj

Y
- [Stage 2: Detailed design. code. debug. test. and de}iverﬂ
with docs, management,
: ¥
ma rketl ng [Stage m: Detailed design. code. debug, test. and deli\'er}]

— Product must be decomposable

e How does staged delivery differ from evolutionary prototyping?

— In staged delivery, requirements are better known ahead of time
rather than discovered by customer feedback on each release.

16

Evolutionary delivery

e evolutionary delivery

— a hybrid between evolutionary
prototyping and staged delivery

Repeat this cycle until you run
out of time, you run out of

e difference from evo. prototyping
— focuses on low-level systems first
— evo. prototyping focuses on visible aspects (front-end)

17

Design-to-*

e design-to-schedule
— useful when you absolutely need to ship by a certain date
— similar to the staged delivery model
e but less flexible because of the fixed shipping date

— requires careful prioritization of features and risks to address
— not recommended

e design-to-tools
— a model where the project only incorporates features that are
easy to implement by using or combining existing components

— reduces development time at cost of losing control of project
— not recommended

o off-the-shelf software: don't build it, just purchase it (...)

8

Agile development

e agile software development: An adaptive, iterative process
where teams self-organize and build features dynamically.

— Extreme Programming
— Scrum

adaptability

— transparency

Agility is... simplicity

e values: stmateoy
eeeeeeeeee unity

— Individuals and interaction
over processes and tools

— Working software
over documentation

— Customer collaboration
over contract negotiation

— Responding to change
over following a plan

vision

19

Agile Manifesto

e The 12-point Agile Manifesto:
— customer satisfaction by rapid delivery of useful software
— welcome changing requirements, even late in development
— working software is delivered frequently (weeks rather than months)
— working software is the principal measure of progress
— sustainable development, able to maintain a constant pace
— close, daily co-operation between business people and developers
— face-to-face conversation is the best form of communication
— projects are built around motivated individuals, who are trusted
— continuous attention to technical excellence and good design
— simplicity
— self-organizing teams
— regular adaptation to changing circumstance

o Works well when used with small teams of experts who can
handle a bit of uncertainty, chaos, change

20

What's the “best” model?

e Consider
— The task at hand
— Risk management
— Quality / cost control
— Predictability
— Visibility of progress
— Customer involvement and feedback

e Often a combination of models is used in practice

GOOD
e Aim for good, fast, and cheap
— But you can't have all three at the same time Q
5 &
S C)Q\ 21

Model category matrix

e Rated 1 (low) — 5 (high) in each of the categories shown:

Risk Quality/ Predict- | Visibility of | Customer

mgmt. | cost ctrl. ability progress involvement
code-and-fix 1 1 1 3 1
waterfall 3 4 4 1 2
spiral 5 5 3 3 3
evolutionary
prototyping 3 3 2 5 5
staged delivery 4 5 4 4 4
design-to-schedule 4 3 5 3 2

22

Model pros/cons

Commercial
EI;::%?II;yModeI ‘I;‘vure fall Code-and-) Modified Evolutionary staged Evolutionary Design-to- Design-to- Off-the-Shelf
aterfal Fix Spiral Waterfalls Prototyping Delivery Delivery Schedule Tools Software

Works with POOT!Y Poor Poor Excellent Fair to Excellent Poor Fair to Poor to Fair Excellent
understood requirements excellent excellent fair
Works with poorly Poor Poor Excellent Fair to Poor to Poor Poor Poor Poor to Poor to
understood architecture excellent fair excellent excellent
Produces highly reliable Excellent Poor Excellent Excellent Fair Excellent .. Falrto Fair i Moy
system excellent excellent excellent
Produces system with Excellent Poor to Pellatit fidtiaitiy Sopcliies Excellent ~ Excellent Fair ﬁ) Poor N/A
large growth envelope fair oo

; Fair Fair Fair to Poor to N/A
Manages risks ; Poor Poor Excellent Fair Fair excellent fair
Can be qonstralned to Fair Poor Fair Fair Poor Fair Fair Excellent Excellent Excellent
a predefined schedule
Has low overhead Poor Excellent Fair Excellent Fair Fair Fair Fair Fair to Excellent
Allows for midcourse Poor Poor to Fair Fair Excellent eelo
corrections excellent Poor Fair to Poor to Excellent Poor
Provides customer Poor Fair Excell i el et fa

ent F
with progress visibility e Excellent Fair Excellent Fair Excellent N/A
Provides management Fair Poor Excell i i
ent Fair to

with progress visibility sl g Fair Excellent Excellent Excellent Excellent N/A
Requires little manager Fair Excellent Poor Poor to Poor Fair Fair Poor Fair Fair
or developer sophistication fair

23

