
CSE 403
Lecture 2

Software Lifecycle Models

Thanks to Marty Stepp, Michael Ernst, and other past instructors of CSE 403
http://www.cs.washington.edu/403/

2

Lecture outline

• The software lifecycle
–  evaluating models

•  Lifecycle models
–  code-and-fix
–  waterfall
–  spiral
–  evolutionary prototyping
–  staged delivery
–  design-to-* (schedule, tools, etc.)

3

Big questions

• What is a software lifecycle model? When and why should we
use such models?

• How do we decide which model is the “best” one to use?

• Briefly describe each of these models:
–  code-and-fix, waterfall, spiral, evolutionary prototyping, staged

delivery, design-to-schedule, etc.

• What are some benefits and drawbacks of each model?

4

How complex is software?

• Measures of complexity:
–  lines of code

• Windows Server 2003: 50 MSLoC
• Debian 5.0: 324 MSLoC (61 years to type at 50wpm!)

–  number of classes
–  number of modules
–  module interconnections and dependencies
–  time to understand
–  # of authors

–  … many more

5

Ad-hoc development
• ad-hoc development: no formal process (aka “code and fix”)

–  Sounds great! No learning required.

•  drawbacks?
–  some important actions (design, testing) may go ignored
–  not clear when to start or stop doing each task
–  does not scale well to multiple people
–  not easy to review or evaluate one's work
–  code didn't match user's needs (no requirements!)
–  code was not planned for modification, not flexible

• Key observation: The later a problem is found, the more
expensive it is to fix.

6

The “Software Lifecycle”
•  software lifecycle: The entire process of creating a software

product from an initial concept until the last user stops using it.

–  often divided into “phases” although the ordering may vary:
• Requirements Analysis & Specification
• High-level (Architectural) Design
• Detailed (Object-oriented) Design
• Implementation, Integration, Debugging
• Testing, Profiling, Quality Assurance
• Operation and Maintenance
• other possibilities: Risk Assessment, Prototyping

–  goals of each phase:
• mark out a clear set of steps to perform
• produce a tangible document or item (aka “artifact” or “deliverable”)
• allow for review of work
• specify actions to perform in the next phase

7

Some lifecycle models
•  code-and-fix: write some code, debug it, repeat (i.e., ad-hoc)

• waterfall: standard phases (req., design, code, test) in order

•  spiral: assess risks at each step; do most critical action first

• evolutionary prototyping: build an initial small requirement
spec, code it, then "evolve" the spec and code as needed

•  staged delivery: build initial requirement specs for several
releases, then design-and-code each in sequence

• agile development: iterative, adaptive, incremental
improvement done by self-organizing cross-functional teams

8

Benefits/limits of models

•  benefits of models
–  structures workflow, decomposes workflow, helps us

understand/manage process

•  limitations of models
–  can lead to compromises and artificial constraints
–  risk of overemphasizing process (not the end in itself)

• ways of evaluating models
–  risk management, quality/cost control, predictability,

visibility of progress, customer involvement/feedback

9

Waterfall
requirements

verify

retirement

operations

test

implement
verify

design

req. change

•  benefits?
–  formal, standard; specific phases with clear goals
–  clear divisions between phases
–  good feedback loops between adjacent phases
–  supports inexperienced teams

10

Drawbacks of waterfall

•  drawbacks?
–  assumes requirements will be clear and well-understood
–  requires a lot of planning up front (not always easy)
–  rigid, linear; not adaptable to change in the product
–  costly to “swim upstream” back to a previous phase
–  nothing to show until almost done (“we’re 90% done, I swear!”)

requirements

verify

retirement

operations

test

implement
verify

design

req. change

11

•  steps taken at each loop:
–  determine objectives

and constraints
–  identify risks
–  evaluate options to

resolve risks
–  develop and verify deliverables

•  benefits?
–  provides early indication of unforeseen problems
–  always addresses the biggest risk first
–  accommodates changes, growth
–  eliminates errors and unattractive choices early

Spiral
Barry Boehm, USC

12

Drawbacks of spiral

•  steps taken at each loop:
–  determine objectives

and constraints
–  identify risks
–  evaluate options to

resolve risks
–  develop and verify deliverables

•  drawbacks?
–  relies on developers to have risk-assessment expertise
–  perhaps over-focuses on risk and “putting out fires”; other

features may go ignored because they are not “risky” enough
–  complex; how do you actually follow this?
–  works poorly when bound to an inflexible contract

Barry Boehm, USC

13

Evolutionary prototyping

•  build initial requirements, design/code it, “evolve” as needed

•  benefits?
–  produces steady signs of progress, builds customer confidence
–  useful when requirements are not well known or change rapidly
–  customer involvement (“What do you think of this version?”)

for each build:
detailed design,
implement,
test, deliver

requirements

verify

retirement

operations

verify

arch. design

14

Drawbacks of evol. proto.

•  drawbacks?
–  requires close customer involvement
–  assumes user's initial spec will be flexible
–  unclear how much iteration/time will be needed to finish

• hard to estimate schedule or feature set

–  fails for separate pieces that must then be integrated
–  temporary fixes become permanent constraints
–  bridging; new software trying to gradually replace old

for each build:
detailed design,
implement,
test, deliver

requirements

verify

retirement

operations

verify

arch. design

15

Staged delivery

• Waterfall-like
 beginning

• Short release cycles

•  benefits?
–  can ship at end of any release cycle during implementation
–  from the outside (to customers) it looks like a successful delivery

even if it is not the final goal the team aimed for
–  intermediate deliveries show progress and lead to feedback
–  problems visible earlier due to earlier integration

16

Drawbacks of staged delivery

•  drawbacks?

–  Requires tight coordination
 with docs, management,
 marketing

–  Product must be decomposable

• How does staged delivery differ from evolutionary prototyping?
–  In staged delivery, requirements are better known ahead of time

rather than discovered by customer feedback on each release.

17

Evolutionary delivery

• evolutionary delivery
–  a hybrid between evolutionary

prototyping and staged delivery

•  difference from evo. prototyping
–  focuses on low-level systems first
–  evo. prototyping focuses on visible aspects (front-end)

18

Design-to-*

• design-to-schedule
–  useful when you absolutely need to ship by a certain date
–  similar to the staged delivery model

• but less flexible because of the fixed shipping date

–  requires careful prioritization of features and risks to address
–  not recommended

• design-to-tools
–  a model where the project only incorporates features that are

easy to implement by using or combining existing components
–  reduces development time at cost of losing control of project
–  not recommended

• off-the-shelf software: don't build it, just purchase it (...)

19

Agile development

• agile software development: An adaptive, iterative process
where teams self-organize and build features dynamically.
–  Extreme Programming
–  Scrum

•  values:
–  Individuals and interactions

 over processes and tools
–  Working software

 over documentation
–  Customer collaboration

 over contract negotiation
–  Responding to change

 over following a plan

20

Agile Manifesto

• The 12-point Agile Manifesto:
–  customer satisfaction by rapid delivery of useful software
–  welcome changing requirements, even late in development
–  working software is delivered frequently (weeks rather than months)
–  working software is the principal measure of progress
–  sustainable development, able to maintain a constant pace
–  close, daily co-operation between business people and developers
–  face-to-face conversation is the best form of communication
–  projects are built around motivated individuals, who are trusted
–  continuous attention to technical excellence and good design
–  simplicity
–  self-organizing teams
–  regular adaptation to changing circumstance

• Works well when used with small teams of experts who can
handle a bit of uncertainty, chaos, change

21

What’s the “best” model?

• Consider
–  The task at hand
–  Risk management
–  Quality / cost control
–  Predictability
–  Visibility of progress
–  Customer involvement and feedback

• Often a combination of models is used in practice

• Aim for good, fast, and cheap
–  But you can’t have all three at the same time

GOOD

22

Model category matrix

Risk
mgmt.

Quality/
cost ctrl.

Predict-
ability

Visibility of
progress

Customer
involvement

code-and-fix

waterfall

spiral

evolutionary
prototyping

staged delivery

design-to-schedule

• Rated 1 (low) – 5 (high) in each of the categories shown:

Risk
mgmt.

Quality/
cost ctrl.

Predict-
ability

Visibility of
progress

Customer
involvement

code-and-fix 1 1 1 3 1
waterfall 3 4 4 1 2
spiral 5 5 3 3 3
evolutionary
prototyping 3 3 2 5 5
staged delivery 4 5 4 4 4
design-to-schedule 4 3 5 3 2

23

Model pros/cons

