
Collaborative Programming:
Pair Programming and Reviews

CSE 403

2

Pair programming

• pair programming: 2 people, 1 computer
– take turns “driving”

– rotate pairs often

– pair people of different experience levels

• pros:
– Can produce better code

– An inexperienced coder can learn from an experienced
one

• cons:
– Some people don’t like it

3

Reviews

• Review: Other team member(s) read an artifact
(design, specification, code) and suggest improvements

– documentation

– defects in program logic

– program structure

– coding standards & uniformity with codebase

– enforce subjective rules

– ... everything is fair game

• Feedback leads to refactoring, followed by additional
reviews and eventually approval

• Can occur before or after code is committed

– Not too much nor too little; not too early nor too late

Analogy: writing a newspaper article

What is the effectiveness of…

• Spell-check/grammar check

• Editing your own article

• Others editing your article

Motivation for reviews

• Can catch most bugs, design flaws early

• > 1 person has seen every piece of code
– Insurance against author’s disappearance

– Accountability (both author and reviewers are accountable)

• Forcing function for documentation and code improvements
– Authors to articulate their decisions

– Authors participate in the discovery of flaws

– Prospect of someone reviewing your code raises quality threshold

• Inexperienced personnel get hands-on experience without hurting code
quality
– Pairing them up with experienced developers

– Can learn by being a reviewer as well

• Explicit non-purpose:
– Assessment of individuals for promotion, pay, ranking, etc.

– Management is usually not permitted at reviews

Motivation by the numbers

• Average defect detection rates

– Unit testing: 25%

– Function testing: 35%

– Integration testing: 45%

– Design and code inspections: 55% and 60%.

• 11 programs developed by the same group of people

– First 5 without reviews: average 4.5 errors per 100 lines of code

– Remaining 6 with reviews: average 0.82 errors per 100 lines of code

– Errors reduced by > 80%.

• IBM's Orbit project: 500,000 lines, 11 levels of inspections.

Delivered early with 1% of the predicted errors.

• After AT&T introduced reviews, 14% increase in productivity and

a 90% decrease in defects.
(From Steve McConnell’s Code Complete)

Logistics of the code review

• What is reviewed:
– A specification

– A coherent module (sometimes called an “inspection”)

– A single checkin or code commit (incremental review)

• Who participates:
– One other developer

– A group of developers

• Where:
– In-person meeting

• Best to prepare beforehand: artifact is distributed in advance

• Preparation usually identifies more defects than the meeting

– Email/electronic

7

Review technique and goals

• Specific focus?

– Sometimes, a specific list of defects or code
characteristics

• Error-prone code

• Previously-discovered problem types

• Security

• Checklist (coding standards)

– Automated tools (type checkers, lint) can be better

• Outcomes:

– Only identify defects, or also brainstorm fixes?

8

9

Code review variations

• walkthrough: playing computer, trace values

of sample data

• group reading: as a group, read whole artifact

line-by-line

• presentation: author presents/explains

artifact to the group

• offline preparation: Reviewers look at artifact

by themselves (possibly with no actual

meeting)

10

Code reviews in industry

• Code reviews are a very common industry practice.

• Made easier by advanced tools that:
– integrate with configuration management systems

– highlight changes (i.e., diff function)

– allow traversing back into history

– E.g.: Eclipse, version control tools

Common open source approach:

incremental code review

• Each small change is reviewed before it is

committed

• No change is accepted without signoff by a

“committer”

– Assumed to know the whole codebase well

– Sometimes committers are excepted

• Code review can (d)evolve into a design

discussion

11

My approach:

holistic group code review
• Distribute code (or other artifacts) ahead of time

– Common pagination

– Documentation is required (as is good style)

– No extra overview from developer

• Each reviewer focuses where he/she sees fit

• Mark up with lots of comments

• Identify 5 most important issues

• At meeting, go around the table raising one issue
– Discuss the reasons for the current design, and possible

improvements

• Author takes all printouts and addresses all issues
– Not just those raised in the meeting

12

Code Reviews at Google

"All code that gets submitted needs to be

reviewed by at least one other person, and

either the code writer or the reviewer needs to

have readability in that language. Most people

use Mondrian to do code reviews, and

obviously, we spend a good chunk of our time

reviewing code."

-- Amanda Camp, Software Engineer, Google

Code reviews at Yelp

“At Yelp we use review-board. An engineer works
on a branch and commits the code to their own
branch. The reviewer then goes through the diff,
adds inline comments on review board and sends
them back. The reviews are meant to be a dialogue,
so typically comment threads result from the
feedback. Once the reviewer's questions and
concerns are all addressed they'll click "Ship It!" and
the author will merge it with the main branch for
deployment the same day.”

-- Alan Fineberg, Software Engineer, Yelp

Code reviews at WotC

“At Wizards we use Perforce for SCM. I work with
stuff that manages rules and content, so we try to
commit changes at the granularity of one bug at a
time or one card at a time. Our team is small
enough that you can designate one other person on
team as a code reviewer. Usually you look at code
sometime that week, but it depends on priority. It’s
impossible to write sufficient test harnesses for the
bulk of our game code, so code reviews are
absolutely critical.”

-- Jake Englund, Software Engineer, MtGO

Code reviews at Facebook

"At Facebook, we have an internally-developed web-based tool to aid the
code review process. Once an engineer has prepared a change, she submits
it to this tool, which will notify the person or people she has asked to
review the change, along with others that may be interested in the change -
- such as people who have worked on a function that got changed.

At this point, the reviewers can make comments, ask questions, request
changes, or accept the changes. If changes are requested, the submitter
must submit a new version of the change to be reviewed. All versions
submitted are retained, so reviewers can compare the change to the
original, or just changes from the last version they reviewed. Once a change
has been submitted, the engineer can merge her change into the main
source tree for deployment to the site during the next weekly push, or
earlier if the change warrants quicker release."

- Ryan McElroy, Software Engineer, Facebook

Software quality assurance (review)

• What are we assuring?

• Why are we assuring it?

• How do we assure it?

• How do we know we have assured it?

What are we assuring?

• Validation: building right system?

• Verification: building system right?

• Presence of good properties?

• Absence of bad properties?

• Identifying errors?

• Confidence in the absence of errors?

• Robust? Safe? Secure? Available? Reliable?
Understandable? Modifiable? Cost-effective? Usable? …

Why are we assuring it?

• Business reasons

• Ethical reasons

• Professional reasons

• Personal satisfaction

• Legal reasons

• Social reasons

• Economic reasons

• …

How do we assure it?

Product

PeopleProcess

How do we know we have assured it?

• Depends on “it”

• Depends on what we mean by “assurance”

• …

Code review exercise

public class Account {
double principal,rate; int daysActive,accountType;

public static final int STANDARD=0, BUDGET=1,
PREMIUM=2, PREMIUM_PLUS=3;

}
...
public static double calculateFee(Account[] accounts)
{

double totalFee = 0.0;
Account account;
for (int i=0;i<accounts.length;i++) {

account=accounts[i];
if (account.accountType == Account.PREMIUM ||

account.accountType == Account.PREMIUM_PLUS)
totalFee += .0125 * (// 1.25% broker's fee

account.principal * Math.pow(account.rate,
(account.daysActive/365.25))
- account.principal); // interest-principal

}
return totalFee;

}

What feedback would you give
the author? What changes would
you request before checkin?

23

Improved code (page 1)

/** An individual account. Also see CorporateAccount. */
public class Account {

private double principal;
/** The yearly, compounded rate (at 365.25 days per year). */
private double rate;
/** Days since last interest payout. */
private int daysActive;
private Type type;

/** The varieties of account our bank offers. */
public enum Type {STANDARD, BUDGET, PREMIUM, PREMIUM_PLUS}

/** Compute interest. **/
public double interest() {

double years = daysActive / 365.25;
double compoundInterest = principal * Math.pow(rate, years);
return compoundInterest – principal;

}

/** Return true if this is a premium account. **/
public boolean isPremium() {

return accountType == Type.PREMIUM ||
accountType == Type.PREMIUM_PLUS;

}

24

Improved code (page 2)

/** The portion of the interest that goes to the broker. **/
public static final double BROKER_FEE_PERCENT = 0.0125;

/** Return the sum of the broker fees for all the given
accounts. **/
public static double calculateFee(Account accounts[]) {

double totalFee = 0.0;
for (Account account : accounts) {

if (account.isPremium()) {
totalFee += BROKER_FEE_PERCENT * account.interest();

}
}
return totalFee;

}

}

