
1 of 2

CSE 403, Winter 2012
PHASE 2 (50 points): Software Design Specification (SDS)

due Sun Feb 5, 11:30pm

The SDS milestone is a set of documents about your project's design. Your design should specify how to implement an

object-oriented product to meet the requirements in your SRS. Among other things, your SDS should answer the

questions: what are your classes, what are the responsibilities of each class, and how do the classes collaborate?

Your SDS must contain the following four (4) items:

1. UML class diagram

Submit a UML class diagram for your system in the format shown in Fowler, Chapter 3. Your diagram should display

all major classes, attributes (fields), methods (do not list get / set / is methods), inheritance/interface relationships, and

associational relationships (named and directed, with multiplicity adornments).

Your design will be evaluated on completeness as well as level of thought, attention to principles discussed in class, and

proper UML syntax. Follow Riel's OO design heuristics, such as:

• use encapsulation (Heuristic 2.1)

• keep related data and behavior in the same place (Heuristic 2.9)

• minimize each class's public interface (Heuristic 2.3, 2.6)

• emphasize cohesion and limit coupling (Heuristic 2.7, 2.8)

• avoid "god classes" (Heuristic 3.2)

• avoid insignificant or irrelevant classes (Heuristic 2.11, 3.7, 3.8)

• model-view separation and model independence from view (Heuristic 3.5)

• avoid irrelevant "agent" or "controller" classes (Heuristic 3.10)

Distribute your project's functionality and allow for features to be developed in parallel as much as possible.

If your project is a web application built using a MVC framework such as Ruby on Rails or Django, you should include

model / domain classes and controllers in your class diagram, but you do not need to include view classes. You do not

need to explicitly draw web pages themselves, but if pages are backed by various stateful classes, do include those.

2. UML sequence diagrams (with optional state diagram)

Submit two (2) UML sequence diagrams that depict your product executing two of its important use cases. These can be

the same use cases you wrote about in your SRS. The sequence diagrams should follow the format of the examples from

Fowler, Chapter 4. Your diagram should show all participants (objects) in the sequence, all important directed messages

between them and their return values (if any), as well as interaction frames with proper operator adornments as

appropriate. Use good design with decentralized control; no one class or object should do the bulk of the work.

If your product is a web app, the sequence diagrams should show the "life" of a user's web request. Show the request's

path through your UI, server, and/or data layers as it interacts with each to accomplish the task. If your app is a client or

mobile app, show the entire path through from the user's initial action through the UI down to any lower-level code such

as data structures and objects that model underlying system state and behavior.

Accompanying one or both of the sequence diagrams should be a brief pseudo-code description of the same algorithm or

process, similar to Fowler's Figure 4.4.

As an alternative, if you want to turn in one (1) UML state diagram in place of one of your sequence diagrams, this is

okay. The state diagram should follow proper state diagram syntax as described in Fowler, Chapter 10. Your diagram

should include: a starting pseudo-state; at least 3-4 other meaningful states, properly labeled; transitions between those

states as appropriate, properly labeled; and a final state, properly labeled, as appropriate.

2 of 2

3. Coding style guidelines

Submit a document explaining what style conventions you plan to follow (a reference document or link with an example

would be helpful), and how you plan to enforce a consistent coding style between group members. Describe any tools

you plan to use to enforce these conventions, and/or any methodologies your group members plan to use to enforce them.

Plan at least some time to perform code reviews, where one developer's work will be looked over by one or more others.

Describe how you will provide evidence of these reviews to the grader. Will you take review notes? Will you use a tool

to annotate the reviewed code? Etc.

See the course web site's Links page for links to some useful tools for style checking that you may want to list here.

4. Presentation

Submit a set of 4-6 slides in PDF, PPT, ODP, or online (e.g. Google Docs) format of a brief presentation summarizing

your project and the work you've done on it so far. You should talk about the overall project idea, its major features as

outlined in your SRS, any changes that have been made to it since the initial project proposal, some high-level aspects of

its design including at least one of your design diagrams, your languages and team roles, and so on. Each group will be

given approximately 5 minutes. At least 3 group members must participate in the presentation.

Use at least two diagrams in your slides to receive full credit; these can be taken directly from your other documents.

Submission and Grading:

Submit your SDS documents online through the link provided on the course web site. You may submit documents on

paper in lecture as well if you like, but this means you would have to have those documents finished by 11:30am on the

due date in order to hand them in on time.

Part of your grade will come from the plausibility, thoughtfulness, and level of detail of your work. For example, if you

are listing classes in your class diagram, take care not to forget important classes that would reasonably needed to solve

the task you are working on. Do not forget to include classes for all aspects of your system, such as user interface, data

modeling, database interaction, any "helper" classes or utility code, etc. In the past, some groups have focused too much

on user interface classes and have done a poor job capturing the details of the "model" of your system, the classes that

actually represent the important data and behavior necessary for the task.

List the contents of each class in detail, including a comprehensive set of fields, methods, and constructors. (Do not list

"getter" or "setter" methods that simply provide clients access to data of the object.) Part of your grade comes from

following proper UML syntax, including syntax for classes, interfaces, attributes, methods, access modifiers, parameters,

return values, and types. Also list any and all relationships that occur between classes. Your relationships should have

proper syntax for all elements mentioned in the reading, such as direction, multiplicity, and a label explaining the

relationship.

In UML sequence diagrams, we want to see that you have listed a reasonable set of steps and calls to achieve a concrete

goal described in your use cases from your SRS. Take care not to omit important steps or details. Make sure that the state

of the system at the end of the path through the diagram matches the expectations from the use case to which it relates.

Follow proper sequence diagram syntax for objects, interaction frame bars, messages between objects, and parameters.

Choose a flow of control that is reasonable for your type of project and the goal being achieved in the scenario. Ideally no

one class or object should do too large a share of the work to complete the scenario.

A small part of your grade comes from the looks or aesthetics of your documents. They do not need to be beautiful or

excessively formatted, but your customers need to be able to read them and extract information from them. This means

they should be clearly written, with proper spelling and grammar, clear wording, and drawn and formatted with a enough

organization to present your ideas clearly to the reader.

Remember that part of your grade comes from having a meaningful in-person interaction with your customer before the

phase is due to show your progress, ask questions, get feedback, and generally make sure you are on the right track.

