Design Patterns

with an Emphasis on
Gang of Four

19 April © Kivan¢ Muslu, University of Washington, 2012 1of 11



Design Patterns — WHY?

* Good programming practice
* They solve common problems

* |f you can recognize that you need them, they
will make your life and coding easier

e Resulting code is easy to manage & maintain

* Any other reasons why you use them?

19 April © Kivan¢ Muslu, University of Washington, 2012 20of 11



Design Patterns

* Ones you have seen on Monday
— Singleton
— (Abstract)Factory

* Ones we will focus today

— Adapter
— Observer

* Tons of others available at:

http://sourcemaking.com/design_patterns

19 April © Kivan¢ Muslu, University of Washington, 2012 30f11



Adapter Pattern

“An “off the shelf” component offers compelling
functionality that you would like to reuse, but its
“view of the world” is not compatible with the
philosophy and architecture of the system
currently being developed.”

http://sourcemaking.com/design_patterns/adapter

19 April © Kivan¢ Muslu, University of Washington, 2012 4 of 11



Adapter Example

Client «interface»
Shape

+display{in x1, in y1, in x2, in y2)

JAN

«adaptee»

Rectangle LegacyRectangle

+display(in x1, in y1, in x2, in y2) +display(in x1, In y1, in x2, In y2)

l
l
\
|

Delegate and map to adaptee

19 April © Kivan¢ Muslu, University of Washington, 2012 50f11



Adapter (High Level)

| NewApplication -
+doThis() theWrappedOne.doThal();

LegacyComponent

+doThat()

19 April © Kivan¢ Muslu, University of Washington, 2012 6 of 11



Observer Pattern

* Atype ‘A’ produces (keeps) events/data

* Type ‘B’ is interested in these events/data
— Wants to observe ‘A’

* ‘A’ |lets a special type ‘C’ to register itself and
get notified as these events/data is being
generated

‘B’ implements ‘C’ and registers itself to ‘A’
during creation

19 April © Kivan¢ Muslu, University of Washington, 2012 7 of 11



Observer Example

Auctioneer (Subject)

2. Broadcast New High Bid

Bidders (Observers)

19 April © Kivan¢ Muslu, University of Washington, 2012 8of 11



' . ) ) a a
_J
Subject views « | Observer
model” repe—
+attach(in Observer) )
| —{+setState() AN
I +getState()
: ViewOne ViewTwo
I
I +update() +update()
for each view in views |
v.update() !
model.gelstate():
AP © g 0 oto 0 0 ©



Git Lecture

* Any questions about Git?




Reminders

 SDSis due today @11 PM

* You should start coding soon! (If you have not
already)

— Your next assignment is ZFR

* Progress report due Friday @11 PM (as usual)

19 April © Kivang Muslu, University of Washington, 2012 11 of 11



