
UML

Class and Sequence Diagrams

Violet

Slides adapted from Marty Stepp, CSE 403, Winter 2012

CSE 403 Spring 2012

Anton Osobov

Design Phase

• design: Specifying the structure of how a software system

will be written and function (without actually writing the

code).

• a transition from "what" the system must do, to "how" the

system will do it

– What classes will we need in order to implement a system that

meets our requirements?

– What fields and methods will each class have?

– How will the classes interact with each other?

Introduction to UML

• Unified Modeling Language (UML): depicts an OO

system

– programming languages are not abstract enough for OO design

– UML is an open standard; lots of companies use it

• many programmers either know UML or a "UML-like" variant

UML Class Diagrams

• UML class diagram: A picture of the classes in an OO

system, their fields and methods, and connections between

the classes that interact or inherit from each other

• What are some things not represented in a class

diagram?

– details of how the classes interact

– algorithmic details; how particular behavior is implemented

– trivial methods (get/set)

– classes that come from libraries (ArrayList, etc.)

Diagram of a class

• class name in top of box
– write <<interface>> on top of interface’s names

– use italics for an abstract class name

• attributes
– include all fields of the object

– include properties “derived” properties

• operations (constructors/methods)
– may omit trivial methods – get/set

• except from an interface

– should not include inherited methods

Class attributes

• syntax:

– visibility name : type [count] = defaultValue

• underline static attributes

Symbol Visibility

+ public

protected

- private

~ package

(default)

/ derived

Class operations/methods

• syntax:

– visibility name(parameters): returnType

• underline static methods

• parameter types listed as (name: type)

• omit returnType on constructors and
when return is void

Relationships between classes

• generalization: an inheritance relationship

– inheritance between classes

– interface implementation

• association: a usage relationship

– dependency

– aggregation

– composition

Generalization

• hierarchies are drawn top down
– arrow from child to parent

• trivial/obvious relationships often not

drawn
– Java: Object

Parent Line/Arrow Style

class solid, black arrow

abstract class solid, white arrow

interface dashed, white arrow

Association

1. multiplicity

2. name
– what relationship the objects have

3. navigability
– direction

Symbol How many are used?

* 0, 1, or more

1 exactly 1

2..4 between 2 and 4

5..* 5 or more

Association types

• aggregation: “is part of”

– clear, white diamond

• composition: “is entirely made of”

– stronger version of aggregation

– the parts only exist while the whole exists

– black diamond

• dependency: “uses temporarily”

– dotted arrow or line

 1

 1
aggregation

Car

Engine

Page

Book

composition

 *

 1

Lottery

Ticket
Random

dependency

UML Sequence Diagrams

• sequence diagram: an “interaction diagram” that

models a single scenario executing in the system

• UML representation of a use case

Sequence diagram key parts

• participant: object or entity that acts in the diagram

• message: communication between participants

• axes in a sequence diagrams

– horizontal: which participant/object is acting

– vertical: time (down = forward in time)

Representing objects

• Rectangles with object type, optionally preceded by “name : ”

– Write object’s name if it clarifies the diagram

– Object’s “life line” represented by dashed vertical line

Messages between objects

• messages (methods calls) represented by arrow to other

object

– method name and arguments written above the arrow

Messages continued

• messages (methods calls) represented by arrow to other

object

– dashed arrow back indicates return

– different arrows for normal and concurrent/asynchronous calls

Object lifetime

• creation: arrow with “new”

written above it

– object created after start of

scenario appears lower than the

others

• deletion: an X at bottom of

object’s lifeline

– more applicable to languages

with manual memory

management (C, C++)

Method activiation

• activation: thick box over object's life line; drawn when

object's method is on the stack

– either that object is running its code,

or it is on the stack waiting for another object's method to finish

– nest activations to indicate recursion

Activation

Nesting

If statements and loops

• frame: box around part of diagram to indicate if or loop

– if -> (opt) [condition]

– if/else -> (alt) [condition], separated by horizontal dashed line

– loop -> (loop) [condition or items to loop over]

Linking sequence diagrams

• If one diagram is too large or refers to another, indicate

with:

– a "ref" frame that names the other diagram

– Or an unfinished arrow and comment,

Verify customer credit

refCustomer Info

Approved?

Violet

• Tool for creating UML diagrams

• Free

• Easy to learn/use

• http://sourceforge.net/projects/violet/

• Other software:

– Rational Rose

– Visual Paradigm UML Suite

– Microsoft Visio

