CSE 403 Spring 2012

UML

Class and Sequence Diagrams
Violet

Anton Osobov

Slides adapted from Marty Stepp, CSE 403, Winter 2012

Design Phase

« design: Specifying the structure of how a software system
will be written and function (without actually writing the
code).

 a transition from "what" the system must do, to "how" the
system will do it

— What classes will we need in order to implement a system that
meets our requirements?

— What fields and methods will each class have?
— How will the classes interact with each other?

Introduction to UML

« Unified Modeling Language (UML): depicts an OO
system
— programming languages are not abstract enough for OO design
— UML is an open standard; lots of companies use it
* many programmers either know UML or a "UML-like" variant

UML Class Diagrams

« UML class diagram: A picture of the classes in an OO
system, their fields and methods, and connections between
the classes that interact or inherit from each other

« What are some things not represented in a class
diagram?
— details of how the classes interact
— algorithmic details; how particular behavior is implemented
— trivial methods (get/set)
— classes that come from libraries (ArrayList, etc.)

Diagram of a class

« class name in top of box Student
— write <<interface>> on top of interface’s names |-name:String
— use italics for an abstract class name L
dotalStudentsint
#getl D int
: +getiMam e(): String
* attributes ~getE mail Address(1 String
— Include all fields of the object +get T otal Students(rint
— Include properties “derived” properties
« operations (constructors/methods) Rectangle
— may omit trivial methods — get/set :‘;gt}[‘d "
« except from an interface {area: double
— should not include inherited methods + Rectangle(width: int, height: int)
+ distanceltr: Rectangle): double

Class attributes

« syntax:

— visibility name : type [count] = defaultValue

Symbol Visibility
+ public
protected

- private

= package
(default)

/ derived

underline static attributes

Student

name: String
4d:int
totalStudentsint

#getlD(xint

+getMam e(): String

~getE mail Address(1 String
+getT otal Students(Tint

Rectangle

- wichth: it
- height: it
rarea: double

+ Rectangle(width: int, height: int)
+ distanceltr: Rectangle): double

Class operations/methods

* sSyntax: Student
— visibility name(parameters): returnType fdfﬁfﬁ'ing
dotalStudentsint
#getiD(Yint
* underline static methods +gethlam e():String

. ~etE mail Address(I Strin
« parameter types listed as (name: type) +§eﬂma,'studem§;m' 2

« omit returnType on constructors and
when return Is void

Rectangle
- wyiclth: init
- height: it
Farea: double
+ Rectangle(width: int, height: int)
+ distanceltr: Rectangle): double

Relationships between classes

« generalization: an inheritance relationship
— Inheritance between classes
— Interface implementation

e association: a usage relationship
— dependency
— aggregation
— composition

Generalization

 hierarchies are drawn top down
— arrow from child to parent

Line/Arrow Style

class solid, black arrow
abstract class solid, white arrow
interface dashed, white arrow

« trivial/obvious relationships often not

drawn
— Java: Object

«interface»
Shape

+ getArea) double
Ful
|
|
|

1
RecfangufarShape
- wyicith; int
- height: int
farea; double
Rectangular=hapelwidth: int, height: int)
+ cohtainsip: Paint); boolean
+ getAreal) double

Rectangle

- xint
-yint

+ Rectangle(:: int, v int, width: int, height: int)
+ containz(p: Point): boolean
+ diztancelr: Rectangle): double

Association

1. multiplicity
el
* 0, 1, or more
1 exactly 1
2.4 between 2 and 4
5..% 5 or more
2. hame
— what relationship the objects have
3. navigability
— direction
Rectangle _
i J o 0 RectangleList
. contains 1
-y int - list: ArrayList
+ Rectangle(x: int, y: int, wictth: int, height: int) o o + add(r Rectangle)
+ contains(p: Point): boolean + clear()
+ distance(r: Rectangle): double

Association types \ o ‘

1 —
_ _ aggregation
- aggregation: “is part of” 1
— clear, white diamond Engine
Book
« composition: “is entirely made of composition
— stronger version of aggregation T 1
— the parts only exist while the whole exists *
— black diamond
Page
« dependency: “uses temporarily” depeYdency

— dotted arrow or line Lottery passsssssnssp Random
Ticket

UML Sequence Diagrams

« sequence diagram: an “interaction diagram” that
models a single scenario executing in the system

« UML representation of a use case

Sequence diagram key parts

e participant: object or entity that acts in the diagram
* message: communication between participants

e axes in a sequence diagrams
— horizontal: which participant/object is acting
— vertical: time (down = forward in time)

Representing objects

« Rectangles with object type, optionally preceded by “name : ”
— Write object’s name if it clarifies the diagram
— Object’s “life line” represented by dashed vertical line

(OMS ek of
Obiect Fﬂjﬁ ﬁfm n €05
Emuth.F‘&%‘ Patient \ MQ‘
b'&e"ﬂ \ifel\ré

Name syntax: <objectname>:<classname>

Messages between objects

* messages (methods calls) represented by arrow to other
object
— method name and arguments written above the arrow

‘Hospital

Admit (patientl D, roomTvpe)

>

Messages continued

* messages (methods calls) represented by arrow to other
object
— dashed arrow back indicates return
— different arrows for normal and concurrent/asynchronous calls

Messages

‘Controller

_ \
I -Ccrn’:rcrller Pmczdurﬂ- co
j |
£ ;uﬂfru" F: _____
I
I
1

\a¥ flow ©
' Furn
| -Controller | re

{-

Object lifetime

a Handler

e creation: arrow with “new”

query database L

written above it -
— oObject (_:reated after start of new acuy
scenario appears lower than the
others e
creation i ‘
. {_““r:;s;;_m"“j] ﬁiiethlr
 deletion: an X at bottom of ‘ '
ObjeCt,S Iifeline extract results ‘
— more applicable to languages U dose \|
with manual memory s ><
management (C, C++) {---;;s;;;----X

"" self-deletion

Method activiation

« activation: thick box over object's life line; drawn when
object's method is on the stack

— either that object is running its code,
or it is on the stack waiting for another object's method to finish

— nest activations to indicate recursion

\
\
\
\
.

Activation I &
Controller ‘

E ----- Nesting |

If statements and loops

« frame: box around part of diagram to indicate i £ or loop

— if -> (opt) [condition]
— if/else-> (alt) [condition], separated by horizontal dashed line
— loop -> (loop) [condition or items to loop over]
. careful : regular : i
Order Distributor Distributor Messenger
dispatch | | | |
| | |
loop [for each| Ii|ne item] | | |
operator alt J [value;"a‘ijDD] | | Fams|
dispatch | | |
T | |
————————————————————— S O |
[else] | | |
dispgtch | |
auerd | i |
| | |
opt [needsConfirmation] | confirm | |
l | | I
| | |

Linking sequence diagrams

 If one diagram is too large or refers to another, indicate
with:
— a "ref" frame that names the other diagram
— Or an unfinished arrow and comment,

Diagram | Diggram 2
Lhagram 1| Zlagialn
oblC] ob3:C3 ob4:C4
Customer Info ref) ob , I
1 . i bfl]'{_‘i:} J_ |
| [x=0] bar(x) |
I

Verify customer credit doit(w)

Approved?

- — — — —

[[
[[
\ \

|
\ \
\ \
| \
[[
\ \
\ \
[[
\ \
\ \
\ \
| \
\ \
\ \
[[
\ \
\ \
[[
\ \
\ \
[[

e

Violet

« Tool for creating UML diagrams

* Free

« Easy to learn/use
 http://sourceforge.net/projects/violet/

e Other software:
— Rational Rose
— Visual Paradigm UML Suite
— Microsoft Visio

