
Week 6
Monday Tuesday Wednesday Thursday Friday

• Testing III
• Reading due

• Group
meetings

• Testing IV • Section
• ZFR due

• ZFR
demos

• Progress
report due

• Readings
out

CSE403	
 ● Software engineering ●	
 sp12

CSE403 Sp12 1

•  Concolic testing – combine symbolic and
concrete testing

•  Back to the basics of testing

Concolic

•  Symbolic execution (or evaluation or testing) counts on a
constraint solver (a kind of automated theorem prover) to
solver for path conditions that will exercise specific
branches in the CFG – we saw this last lecture, and we’ll
see it again today

•  The technology for constraint solvers is impressive, but
there are still some constraints that cannot be
automatically solved

•  Concolic approaches combine concrete and symbolic
execution to increase code coverage and, ideally, find
bugs that would be otherwise hard to find

•  KLEE, Cute, DART, etc. are examples of tools supporting
concolic testing

CSE403 Sp12 2

To another’s slide deck for examples

•  From Pınar Sağlam – elided to examples
•  Two examples, swapped in our slide deck

–  The (now) second example (starting at slide 12) is
really only symbolic execution, but shows how it
works on data structures with some complexity

CSE403 Sp12 3

Back to partitioning

•  Ideal test suite
– Identify sets with same behavior
– Try one input from each set

•  Two problems
1. Notion of the same behavior is subtle

Naive approach: execution equivalence
Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge
– Use heuristics to approximate cheaply

CSE403 Sp12 4

Naive Approach: Execution Equivalence

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {
 if (x < 0) return -x;
 else return x;
}

•  All x<0 are execution equivalent – that is, the

program takes same sequence of steps for any
x<0

•  All x ≥ 0 are also execution equivalent
•  Suggests that {-3,3}, for example, is a good test

suite

Execution Equivalence Doesn't Work

•  So, what’s the problem?
•  There are two execution paths, but combined with the

specification there are three separate behaviors
–  x < -2
–  x = -2 ∨ x = -1
–  x ≥ 0

•  {-3, 3} does not reveal the error behaviors!

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {
 if (x < -2) return -x;
 else return x;
}

Heuristic: Revealing Subdomains

•  A subdomain is a subset of possible inputs
•  A subdomain is revealing for error E if either

–  Every input in that subdomain triggers error E, or
–  No input in that subdomain triggers error E

•  Need test only one input from a given subdomain
–  If subdomains cover the entire input space, then

we are guaranteed to detect the error if it is
present

•  The trick is to guess these revealing subdomains

Ex: buggy abs, revealing subdomains?

int abs(int x) {
 if (x < -2) return -x;
 else return x;
}

•  Possible subdomains
•  {-1}
•  {-2}
•  {-2,-1}
•  {-3,-2,-1}

•  Which of these is not a revealing subdomain for this bug?
•  Which of these is the best revealing subdomain for this bug?

Heuristics for Designing Test Suites

•  A good heuristic gives
–  few subdomains
–  ∀ errors E in some class of errors,
–  high probability that some subdomain is revealing

for E
•  Different heuristics target different classes of errors

–  In practice, combine multiple heuristics

Black Box Testing

•  Heuristic: Explore alternate specification paths
–  Procedure is a black box: interface visible, internals hidden

•  Example
–  int max(int a, int b)
 // effects: a > b => returns a
 // a < b => returns b
 // a = b => returns a

•  Three paths, so three test cases
–  (4, 3) => 4 (i.e. any input in the subdomain a > b)
–  (3, 4) => 4 (i.e. any input in the subdomain a < b)
–  (3, 3) => 3 (i.e. any input in the subdomain a = b)

More Complex Example

int find(int[] a, int value) throws Missing
// returns: the smallest i such
// that a[i] == value
// throws: Missing if value is not in a

•  Two obvious tests:
([4, 5, 6], 5) => 1
([4, 5, 6], 7) => throw Missing

•  Must hunt for multiple cases in the specification
([4, 5, 5], 5) => 1

•  Write test cases based on paths through the specification

–  int find(int[] a, int value) throws Missing
// returns: the smallest i such
// that a[i] == value
// throws: Missing if value is not in a

•  Two obvious tests:
 ([4, 5, 6], 5) => 1
 ([4, 5, 6], 7) => throw Missing

•  Have I captured all the paths?

•  Must hunt for multiple cases in effects or requires

Heuristic: Boundary Testing

•  Create tests at the edges of subdomains
–  off-by-one bugs
–  forgot to handle empty container
–  overflow errors in arithmetic
–  aliasing

•  Small subdomains at the edges of the “main”
subdomains have a high probability of revealing
these common errors

•  Also, you might have misdrawn the boundaries

Boundary Testing

•  To define the boundary, need a distance metric
–  Define adjacent points

•  One approach
–  Identify basic operations on input points
–  Two points are adjacent if one basic operation apart

•  Point is on a boundary if either
–  There exists an adjacent point in a different subdomain
–  Some basic operation cannot be applied to the point

•  Example: list of integers
–  Basic operations: create, append, remove
–  Adjacent points: <[2,3],[2,3,3]>, <[2,3],[2]>
–  Boundary point: [] (can’t apply remove integer)

Boundary Cases: Aliases

<E> void appendList(List<E> src, List<E> dest) {
// modifies: src, dest
// effects: removes all elements of src and
// appends them in reverse order to
// the end of dest

 while (src.size()>0) {
 E elt = src.remove(src.size()-1);
 dest.add(elt)
 }
}
•  What happens if src and dest refer to the same

thing? This is aliasing, and it’s easy to forget! Watch
out for shared references in inputs

Regression Testing

•  Whenever you find a bug
–  Store the input that elicited that bug, plus the correct

output
–  Add these to the test suite
–  Verify that the test suite fails
–  Fix the bug
–  Verify the fix

•  Ensures that your fix solves the problem
•  Helps to populate test suite with good tests
•  Protects against reversions that reintroduce bug

–  It happened at least once, and it might happen again

Rules of Testing

•  First rule of testing: Do it early and do it often
–  Best to catch bugs soon, before they have a chance to hide.
–  Automate the process if you can
–  Regression testing will save time

•  Second rule of testing: Be systematic
–  If you randomly thrash, bugs will hide in the corner until

you're gone
–  Writing tests is a good way to understand the spec

•  Think about revealing domains and boundary cases
•  If the spec is confusing à write more tests

–  Spec can be buggy too
•  Incorrect, incomplete, ambiguous, and missing corner

cases
–  When you find a bug à write a test for it first and then fix it

CSE403	
 ● Software engineering ●	
 sp12

CSE403 Sp12 17

Week 6
Monday Tuesday Wednesday Thursday Friday

• Testing III
• Reading due

• Group
meetings

• Testing IV • Section
• ZFR due

• ZFR
demos

• Progress
report due

• Readings
out

