CSE403 e Software engineering e sp12

rMonday- oo Taesday-—-| Wednesday | Thursday Friday

ting: His s Group- - Testing IV | «Section | < ZFR
sading eetings *ZFR due | demos
* Progress

report due
* Readings
out

« Concolic testing — combine symbolic and
concrete testing

» Back to the basics of testing

CSE403 Sp12

Concolic

« Symbolic execution (or evaluation or testing) counts on a
constraint solver (a kind of automated theorem prover) to
solver for path conditions that will exercise specific
branches in the CFG — we saw this last lecture, and we’ll
see it again today

« The technology for constraint solvers is impressive, but
there are still some constraints that cannot be
automatically solved

« Concolic approaches combine concrete and symbolic
execution to increase code coverage and, ideally, find
bugs that would be otherwise hard to find

« KLEE, Cute, DART, etc. are examples of tools supporting
concolic testing

CSE403 Sp12

To another’s slide deck for examples

* From Pinar Saglam — elided to examples
 Two examples, swapped in our slide deck

— The (now) second example (starting at slide 12) is
really only symbolic execution, but shows how it
works on data structures with some complexity

CSE403 Sp12

Back to partitioning

 |deal test suite
—ldentify sets with same behavior
—Try one input from each set

 Two problems

1. Notion of the same behavior is subtle
Naive approach: execution equivalence
Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge
— Use heuristics to approximate cheaply

CSE403 Sp12 4

Naive Approach: Execution Equivalence

// returns: x < 0 => returns -x
// otherwise => returns x

int abs(int x) {
if (x < 0) return -x;
else return x;

« All x<0 are execution equivalent — that is, the

program takes same sequence of steps for any
x<0

 Allx 2 0 are also execution equivalent

e Suggests that {-3, 3}, for example, is a good test
suite

Execution Equivalence Doesn't Work

// returns: x < 0 => returns -x
// otherwise => returns x

int abs(int x) {
if (x < -2) return -x;
else return x;

}
* S0, what's the problem?

* There are two execution paths, but combined with the
specification there are three separate behaviors

- x < =2
- X = -2V x=-1
- x =20

« {-3, 3} does not reveal the error behaviors!

Heuristic: Revealing Subdomains

A subdomain is a subset of possible inputs

A subdomain is revealing for error E if either

— Every input in that subdomain triggers error E, or
— No input in that subdomain triggers error E

Need test only one input from a given subdomain

— |f subdomains cover the entire input space, then
we are guaranteed to detect the error ifit is
present

The trick is to guess these revealing subdomains

Ex: buggy abs, revealing subdomains?

int abs(int x) {
if (x < -2) return -x;
else return x;

 Possible subdomains

- {-1}
* {-2}
¢ {_21_1}

* { -3 ’ -2 ’ _1}
* Which of these is not a revealing subdomain for this bug?
« Which of these is the best revealing subdomain for this bug?

Heuristics for Designing Test Suites

* A good heuristic gives
— few subdomains
— V errors E in some class of errors,

— high probability that some subdomain is revealing
for E

 Different heuristics target different classes of errors
— In practice, combine multiple heuristics

Black Box Testing

» Heuristic: Explore alternate specification paths
— Procedure is a black box: interface visible, internals hidden
 Example

— int max(int a, int b)
// effects: a > b => returns a
// a < b => returns b
// a = b => returns a

 Three paths, so three test cases
— (4,3) =>4 (i.e. any input in the subdomain a > b)
— (3,4) =>4 (i.e. any input in the subdomain a < b)
— (3,3) =>3 (i.e. any input in the subdomain a = b)

More Complex Example

int find(int[] a, int value) throws Missing
// returns: the smallest i such

// that a[i] == value

// throws: Missing if value is not in a

 Two obvious tests:
([4,56],5) =1
([4,56],7) =>throw Missing

« Must hunt for multiple cases in the specification
([4,55],5)=>1

Heuristic: Boundary Testing

« Create tests at the edges of subdomains
— off-by-one bugs
— forgot to handle empty container
— overflow errors in arithmetic
— aliasing
« Small subdomains at the edges of the “main”

subdomains have a high probability of revealing
these common errors

* Also, you might have misdrawn the boundaries

Boundary Testing

To define the boundary, need a distance metric

— Define adjacent points
One approach

— ldentify basic operations on input points

— Two points are adjacent if one basic operation apart
Point is on a boundary if either

— There exists an adjacent point in a different subdomain

— Some basic operation cannot be applied to the point
Example: list of integers

— Basic operations: create, append, remove

— Adjacent points: <[2,3],[2,3,3]>, <[2,3],[2]>

— Boundary point: [] (can’t apply remove integer)

Boundary Cases: Aliases

<E> void appendList (List<E> src, List<E> dest) {

// modifies: src, dest

// effects: removes all elements of src and
// appends them in reverse order to
// the end of dest

while (src.size()>0) {
E elt = src.remove(src.size()-1);,
dest.add(elt)
}
}
 What happens if src and dest refer to the same
thing? This is aliasing, and it's easy to forget! Watch

out for shared references in inputs

Regression Testing

Whenever you find a bug

— Store the input that elicited that bug, plus the correct
output

— Add these to the test suite

— Verify that the test suite fails

— Fix the bug

— Verify the fix

Ensures that your fix solves the problem

Helps to populate test suite with good tests

Protects against reversions that reintroduce bug

— It happened at least once, and it might happen again

Rules of Testing

« First rule of testing: Do it early and do it often

— Best to catch bugs soon, before they have a chance to hide.
— Automate the process if you can

— Regression testing will save time
Second rule of testing: Be systematic

— If you randomly thrash, bugs will hide in the corner until
you're gone
— Writing tests is a good way to understand the spec
« Think about revealing domains and boundary cases
« If the spec is confusing - write more tests
— Spec can be buggy too

 Incorrect, incomplete, ambiguous, and missing corner
cases

— When you find a bug - write a test for it first and then fix it

CSE403 e Software engineering e sp12

“Monday:) Tuesday: | Wednesday. | Thursday | Friday
= Testing fll: 1« Group: s Testing IV « Section | «ZFR
#Reading due: 1 meetings: i < ZFR due | demos
e e * Progress
R e report due
T S HH R « Readings
B A B out

CSE403 Sp12

17

