
Week 5-6
Monday Tuesday Wednesday Thursday Friday

• Testing III
• No reading

• Group
meetings

• Testing IV • Section
• ZFR due

• ZFR
demos

• Progress
report due

• Readings
out

CSE403	 ● Software engineering ●	 sp12

CSE403 Sp12 1

Today: symbolic & mutation testing

•  Symbolic example from Michael Beder
–  Basic idea of symbolic testing is to consider inputs as

symbols, not values
–  Track predicates and constraints over those symbols

through the control flow graph (CFG)
–  Can help in determining inputs that will cause the

execution of particular paths
•  Mutation testing – an approach to assessing test suites

–  Systematically change (mutate) the program being
tested

–  If the test suite cannot distinguish the original program
from the mutated program, it has a weakness

CSE403 Sp12 2

Example
all variables are ints

CSE403 Sp12 3

I a = read(b)
II c = 0
III while (a > 1) {
IV if (a^2 > c)
V c = c + a
VI a = a - 2
 }
VII write(c)

a=
c=

a>1

a2>c

c=+a

write

T

T

a=-2
F

F

What input(s) will take path:
(I,II)→III → IV → V → VI →
III → IV → V → VI → III → VII

(I,II)

III

IV

V

VI

VII

After-node [A,B,C] Condition
(I,III) (B,B,0) true

III (B,B,0) B>1

IV (B,B,0) B>1∧B2>0 ≡ B>1

V (B,B,B) B>1

VI (B-2,B,B) B>1

III (B-2,B,B) B>1∧B-2>0 ≡ B>3

IV (B-2,B,B) B>3∧(B-2)2>B ≡ B>4

V (B-2,B,2B-2) B>4

VI (B-4,B,2B-2) B>4

III (B-4,B,2B-2) B>4∧(B-4)<=1 ≡ B=5

CSE403 Sp12 4

I a = read(b)
II c = 0
III while (a > 1) {

IV if (a^2 > c)
V c = c + a
VI a = a - 2
 }
VII write(c) a=

c=

a>1

a2>c

c=+a

write

T

T

a=-2
F

F

What input(s) will take path:
(I,II)→III → IV → V → VI→ III →
IV → V → VI → III→ VII

(I,II)

III

IV

V

VI

VII

Expected result
for input B=5

What happens when solving …

•  B>3∧(B-2)2>B (or such) is hard?
•  Remember, we have to automate all these steps if

they are going to be genuinely useful
•  Come on Wednesday…

CSE403 Sp12 5

Mutation testing

•  Mutation testing is an approach to evaluate – and to
improve – test suites

•  Basic idea
–  Create small variants of the program under test
–  If the tests don’t exhibit different behavior on the

variants then the test suite is not sufficient
•  The material on the following slides is due heavily to

Pezzè and Young on fault-based testing

CSE403 Sp12 6

Estimation

•  Given a big bowl of marbles, how can we estimate
how many?

•  Can’t count every marble individually

CSE403 Sp12 7

What if I also…

•  … have a bag of 100 other marbles of the same size,
but a different color (say, black) and mix them in?

•  Draw out 100 marbles at random and find 20 of them
are black

•  How many marbles did we start with?

CSE403 Sp12 8

Estimating test suite quality

•  Now take a program with bugs and create 100
variations each with a new and distinct bug
–  Assume the new bugs are exactly like real bugs in

every way
•  Run the test suite on all 100 new variants

–  ... and the tests reveal 20 of the bugs
–  … and the other 80 program copies do not fail

•  What does this tell us about the test suite?

CSE403 Sp12 9

Basic Assumptions

•  The idea is to judge effectiveness of a test suite in
finding real faults by measuring how well it finds
seeded fake faults

•  Valid to the extent that the seeded bugs are
representative of real bugs: not necessarily identical
but the differences should not affect the selection

CSE403 Sp12 10

Mutation testing

•  A mutant is a copy of a program with a mutation: a
syntactic change that represents a seeded bug
–  Ex: change (i < 0) to (i <= 0)

•  Run the test suite on all the mutant programs
•  A mutant is killed if it fails on at least one test case

–  That is, the mutant is distinguishable from the
original program by the test suite, which adds
confidence about the quality of the test suite

•  If many mutants are killed, infer that the test suite is
also effective at finding real bugs

CSE403 Sp12 11

Mutation testing assumptions

•  Competent programmer hypothesis: programs are
nearly correct
–  Real faults are small variations from the correct

program and thus mutants are reasonable models
of real buggy programs

•  Coupling effect hypothesis: tests that find simple
faults also find more complex faults
–  Even if mutants are not perfect representatives of

real faults, a test suite that kills mutants is good at
finding real faults, too

CSE403 Sp12 12

Mutation Operators

•  Syntactic change from legal program to legal program
and are thus specific to each programming language

•  Ex: constant for constant replacement
–  from (x < 5) to (x < 12)
–  Maybe select from constants found elsewhere in

program text
•  Ex: relational operator replacement

–  from (x <= 5) to (x < 5)
•  Ex: variable initialization elimination

–  from int x = 5; to int x;

CSE403 Sp12 13

Live mutants scenario

•  Create 100 mutants from a program
–  Run the test suite on all 100 mutants, plus the

original program
–  The original program passes all tests
–  94 mutant programs are killed (fail at least one

test)
–  6 mutants remain alive

•  What can we learn from the living mutants?

CSE403 Sp12 14

How mutants survive

•  A mutant may be equivalent to the original program
–  Maybe changing (x < 0) to (x <= 0) didn’t

change the output at all!
–  The seeded “fault” is not really a “fault” –

determining this may be easy or hard or in the
worst case undecideable

•  Or the test suite could be inadequate
–  If the mutant could have been killed, but was not, it

indicates a weakness in the test suite
–  But adding a test case for just this mutant is a bad

idea – why?

CSE403 Sp12 15

Weak mutation: a variation

•  There are lots of mutants – the number of mutants
grows with the square of program size

•  Running each test case to completion on every
mutant is expensive

•  Instead execute a “meta-mutant” that has many of the
seeded faults in addition to executing the original
program
–  Mark a seeded fault as “killed” as soon as a

difference in an intermediate state is found – don’t
wait for program completion

–  Restart with new mutant selection after each “kill”

CSE403 Sp12 16

Statistical Mutation: another variation

•  Running each test case on every mutant is
expensive, even if we don’t run each test case
separately to completion

•  Approach: Create a random sample of mutants
–  May be just as good for assessing a test suite
–  Doesn’t work if test cases are designed to kill

particular mutants

CSE403 Sp12 17

In real life ...

•  Fault-based testing is a widely used in
semiconductor manufacturing
–  With good fault models of typical manufacturing

faults, e.g., “stuck-at-one” for a transistor
–  But fault-based testing for design errors – as in

software – is more challenging
•  Mutation testing is not widely used in industry

–  But plays a role in software testing research, to
compare effectiveness of testing techniques

•  Some use of fault models to design test cases is
important and widely practiced

CSE403 Sp12 18

Summary

•  If bugs were marbles ...
–  We could get some nice black marbles to judge

the quality of test suites
•  Since bugs aren’t marbles ...

–  Mutation testing rests on some troubling
assumptions about seeded faults, which may not
be statistically representative of real faults

•  Nonetheless ...
–  A model of typical or important faults is invaluable

information for designing and assessing test suites

CSE403 Sp12 19

Week 5-6
Monday Tuesday Wednesday Thursday Friday

• Testing I
• No reading

• Group
meetings

• Midterm • No
Section

• Testing II
• Progress
report due

• Readings
out

• Testing III
• Readings due

• Group
meetings

• TBA • Section
• ZFR due

• ZFR
demos

CSE403	 ● Software engineering ●	 sp12

CSE403 Sp12 20

