CSE403 e Software engineering e sp12

Monday

Tuesday

Wednesday

Thursday

Friday

* Testing IlI
*No reading

» Group
meetings

* Testing IV

» Section
/FR due

«ZFR
demos

* Progress
report due

* Readings
out

CSE403 Sp12




Today: symbolic & mutation testing

« Symbolic example from Michael Beder

— Basic idea of symbolic testing is to consider inputs as
symbols, not values

— Track predicates and constraints over those symbols
through the control flow graph (CFG)

— Can help in determining inputs that will cause the
execution of particular paths

« Mutation testing — an approach to assessing test suites

— Systematically change (mutate) the program being
tested

— If the test suite cannot distinguish the original program
from the mutated program, it has a weakness

CSE403 Sp12



Example

all variables are ints

I a = read(b)

IT c =0
) (I,II)

IIT while (a > 1) {
IV if (a*2 > ¢) vit o o
v c=c+ a ‘: III
VI a=a-2

}
VII erte(C) VI

What input(s) will take path:
(I,II)—III — IV — V — VI —
III — IV — V — VI — III — VII \

CSE403 Sp12



After-node [A,B,C]

I a = read(b)
IT c¢c =0
IIT while (a > 1) {

Iv if (a*2 > c)
v c=c+ a
VI a=a-2

}
VII write(c)

What input(s) will take path:
(I,II)—III — IV — V — VI— III —
IV - V — VI — III— VII

(I,II)

(I,III) (B,B,0)

III (B,B,0)

Iv (B,B,0)

\' (B,B,B)

VI (B-2,B,B)
III (B-2,B,B)

v (B-2,B,B)

\' (B-2,B,2B-2)
VI (B-4,B,2B-2)
III (B-4,B,2B-2)

CSE403 Sp12

IT
F
true ¢
B>1

ITT

B>1AB%2>0 = B>1

VI IV

B>1
B>1
B>1AB-2>0 = B>3

B>3A (B-2)2>B = B>4

v

B>4

B4 Expected result

for input B=5

B>4A (B-4)<=1 = B=5



What happens when solving ...

« B>3A(B-2)2>B (or such)is hard?

« Remember, we have to automate all these steps if
they are going to be genuinely useful

« Come on Wednesday...

CSE403 Sp12



Mutation testing

« Mutation testing is an approach to evaluate — and to
Improve — test suites

« Basicidea
— Create small variants of the program under test

— |f the tests don’t exhibit different behavior on the
variants then the test suite is not sufficient

« The material on the following slides is due heavily to
Pezze and Young on fault-based testing

CSE403 Sp12



Estimation

« Given a big bowl of marbles, how can we estimate
how many?

« Can’t count every marble individually

CSE403 Sp12



What if | also...

* ... have a bag of 100 other marbles of the same size,
but a different color (say, black) and mix them in?

 Draw out 100 marbles at random and find 20 of them
are black

 How many marbles did we start with?

CSE403 Sp12



Estimating test suite quality

 Now take a program with bugs and create 100
variations each with a new and distinct bug

— Assume the new bugs are exactly like real bugs in
every way

* Run the test suite on all 100 new variants

— ... and the tests reveal 20 of the bugs

— ... and the other 80 program copies do not fail
« What does this tell us about the test suite?

CSE403 Sp12



Basic Assumptions

« The idea is to judge effectiveness of a test suite in
finding real faults by measuring how well it finds
seeded fake faults

« Valid to the extent that the seeded bugs are
representative of real bugs: not necessarily identical
but the differences should not affect the selection

CSE403 Sp12

10



Mutation testing

A mutant is a copy of a program with a mutation: a
syntactic change that represents a seeded bug

— Ex: change (i < 0) to (i <= 0)
Run the test suite on all the mutant programs
A mutant is killed if it fails on at least one test case

— That is, the mutant is distinguishable from the
original program by the test suite, which adds
confidence about the quality of the test suite

If many mutants are killed, infer that the test suite is
also effective at finding real bugs

CSE403 Sp12



Mutation testing assumptions

« Competent programmer hypothesis: programs are
nearly correct

— Real faults are small variations from the correct
program and thus mutants are reasonable models
of real buggy programs

« Coupling effect hypothesis: tests that find simple
faults also find more complex faults

— Even if mutants are not perfect representatives of
real faults, a test suite that kills mutants is good at

finding real faults, too

CSE403 Spl2 12



Mutation Operators

Syntactic change from legal program to legal program
and are thus specific to each programming language

Ex: constant for constant replacement
— from (x < 5) to (x < 12)

— Maybe select from constants found elsewhere in
program text

Ex: relational operator replacement
— from (x <= 5) to (x < 5)
Ex: variable initialization elimination
— fromint x = 5; to int x;

CSE403 Spl2 13



Live mutants scenario

* Create 100 mutants from a program
— Run the test suite on all 100 mutants, plus the
original program
— The original program passes all tests

— 94 mutant programs are killed (fail at least one
test)

— 6 mutants remain alive
« What can we learn from the living mutants?

CSE403 Sp12

14



How mutants survive

* A mutant may be equivalent to the original program
— Maybe changing (x < 0) to (x <= 0) didn't
change the output at all!

— The seeded “fault” is not really a “fault” —
determining this may be easy or hard or in the

worst case undecideable
* Or the test suite could be inadequate

— |f the mutant could have been killed, but was not, it
Indicates a weakness in the test suite

— But adding a test case for just this mutant is a bad
idea — why?

CSE403 Spl2 15



Weak mutation: a variation

 There are lots of mutants — the number of mutants
grows with the square of program size

* Running each test case to completion on every
mutant is expensive

* Instead execute a “meta-mutant” that has many of the
seeded faults in addition to executing the original
program

— Mark a seeded fault as “killed” as soon as a
difference in an intermediate state is found — don’t
wait for program completion

— Restart with new mutant selection after each “kill”

CSE403 Spl2 16



Statistical Mutation: another variation

* Running each test case on every mutant is
expensive, even if we don’t run each test case

separately to completion
« Approach: Create a random sample of mutants
— May be just as good for assessing a test suite

— Doesn’t work if test cases are designed to Kill
particular mutants

CSE403 Spl2 17



In real life ...

* Fault-based testing is a widely used in
semiconductor manufacturing

— With good fault models of typical manufacturing
faults, e.qg., “stuck-at-one” for a transistor

— But fault-based testing for design errors — as in
software — is more challenging

« Mutation testing is not widely used in industry

— But plays a role in software testing research, to
compare effectiveness of testing techniques

« Some use of fault models to design test cases is
important and widely practiced

CSE403 Sp12

18



Summary

 If bugs were marbles ...

— We could get some nice black marbles to judge
the quality of test suites

« Since bugs aren’t marbles ...

— Mutation testing rests on some troubling
assumptions about seeded faults, which may not
be statistically representative of real faults

* Nonetheless ...

— A model of typical or important faults is invaluable
information for designing and assessing test suites

CSE403 Spl2 19



CSE403 e Software engineering e sp12

* Testing Il * Group *TBA «Section |*ZFR
* Readings due meetings «/FR due | demos

CSE403 Spl12 20



