
Week 7-10
Monday Tuesday Wednesday Thursday Friday

• Joel test &
interviewing

• No reading

• Groups •  Reviews • Section • Aspect-oriented
design

• Progress report due
• Readings out

• Reading due • Groups
• Beta due

• Section • Progress report due
• Readings out

• No reading
due

• Groups • Midterm II
• Reading
covered
[Notkin gone]

• No
section

• Progress report due

Memorial Day
Holiday

• Groups •  Final
release due

•  Project
Pres. I

•  Project
Pres. II

•  Project Pres. III

CSE403	
 ● Software engineering ●	
 sp12

Collaborative programming

•  In some sense, all software developed by teams is
collaboratively developed

•  We’ll look at two specific kinds of collaboration
–  Pair programming
–  Reviews

CSE403 Sp12 2

Pair programming

•  Technique from agile (XP)
•  2 people, 1 computer

–  take turns “driving” – tactics vs. strategy
–  rotate pairs often

•  pair people of different experience levels
•  all pairs

•  pros:
–  Can produce better code
–  An inexperienced coder can learn from an experienced one

•  cons:
–  Some people don’t like it

CSE403 Sp12

Multiple kids, multiple
mice, one computer

What is known about PP?

•  Not entirely clear
•  “Laurie Williams … has shown that paired programmers are only

15% slower than two independent individual programmers, but
produce 15% fewer bugs. Since testing and debugging are often
many times more costly than initial programming, this is an
impressive result.” [Economist, 2001]

•  A 5 year-old meta-analysis stated: "pair programming is not
uniformly beneficial or effective because many other factors
besides the choice of whether to use pair programming have
large effects on the outcome of a programming task.”

•  And many other studies, with mixed outcome
–  Usually “less productive” but “better quality”
–  Some results showing benefits in introductory programming

and in increasing diversity in computing

CSE403 Sp12 4

Possible “hard to measure” benefits

•  Knowledge passing
–  Practices
–  Knowledge of the specific system

•  Improved discipline and time management
–  Less likely to skip writing tests or cutting other

corners
–  Less likely to spend time on personal stuff
–  Fewer interruptions of a pair than an individual

•  Increased morale
•  Greater confidence in the properties of the code

CSE403 Sp12 5

Reviews

•  Other team member(s) read
an artifact (design,
specification, code) and
suggest improvements

•  Feedback leads to
improvements, followed by
additional reviews and
eventually approval

•  Can occur before or after
code is committed

•  Getting the right balance in
when and how much is
important

CSE403 Sp12

•  ... everything is usually
fair game
•  documentation
•  defects in program

logic
•  program structure
•  coding standards &

uniformity with
codebase

•  enforce subjective
rules

Analogy: writing a newspaper article

•  What is the effectiveness of…
–  Spell-check/grammar check?
–  Editing your own article?
–  Others editing your article?
–  Others walking through their comments with you?

CSE403 Sp12 7

Motivation for reviews

•  Can catch many bugs, design flaws early
•  > 1 person has seen every piece of code

–  Insurance against author’s disappearance
–  Accountability (both author and reviewers are

accountable)
•  Forcing function for documentation and code

improvements
–  Authors to articulate their decisions
–  Authors participate in the discovery of flaws
–  Prospect of someone reviewing your code raises

quality threshold

CSE403 Sp12 8

More motivation

•  Inexperienced personnel get hands-on experience
without hurting code quality
–  Pairing them up with experienced developers
–  Can learn by being a reviewer as well

•  Explicit non-purpose
–  Assessment of individuals for promotion, pay,

ranking, etc.
–  Management is usually not permitted at reviews

CSE403 Sp12 9

Motivation by the numbers
(From Steve McConnell’s Code Complete)

•  Average defect detection rates
–  Unit testing: 25%
–  Function testing: 35%
–  Integration testing: 45%
–  Design and code inspections: 55% and 60%

•  11 programs developed by the same group of people
–  First 5 without reviews: average 4.5 errors per 100 lines of code
–  Remaining 6 with reviews: average 0.82 errors per 100 lines of

code
–  Errors reduced by > 80%

•  IBM's Orbit project: 500,000 lines, 11 levels of inspections. Delivered
early with 1% of the predicted errors.

•  After AT&T introduced reviews, 14% increase in productivity and a 90%
decrease in defects

CSE403 Sp12 10

Logistics of the code review

•  What is reviewed
–  A specification
–  A coherent module (sometimes called an “inspection”)
–  A single checkin or code commit (incremental review)

•  Who participates
–  One other developer
–  A group of developers

•  Where
–  In-person meeting

•  Best to prepare beforehand: artifact distributed in advance
•  Preparation usually identifies more defects than the meeting

–  Email/electronic

CSE403 Sp12

CSE403 Sp12

Review technique and goals

•  Specific focus?
–  Sometimes, a specific list of defects or code

characteristics
•  Error-prone code
•  Previously-discovered problem types
•  Security
•  Checklist (coding standards)

–  Automated tools (type checkers, lint) can be better

•  Outcomes
–  Only identify defects, or also brainstorm fixes?

Code review variations

•  walkthrough: playing computer, trace values of
sample data

•  group reading: as a group, read whole artifact line-
by-line

•  presentation: author presents/explains artifact to the
group

•  offline preparation: Reviewers look at artifact by
themselves (possibly with no actual meeting)

CSE403 Sp12 13

Code reviews in industry
•  Code reviews are a very common industry practice
•  Made easier by advanced tools that

–  integrate with configuration management systems
–  highlight changes (i.e., diff function)
–  allow traversing back into history

CSE403 Sp12

Common open source approach:
incremental code review

•  Each small change is reviewed before it is committed
•  No change is accepted without signoff by a

“committer”
–  Assumed to know the whole codebase well
–  Sometimes committers are excepted

•  Code review can (d)evolve into a design discussion

CSE403 Sp12

Ernst’s approach:
holistic group code review
•  Distribute code (or other artifacts) ahead of time

–  Common pagination
–  Documentation is required (as is good style)
–  No extra overview from developer

•  Each reviewer focuses where he/she sees fit
•  Mark up with lots of comments
•  Identify 5 most important issues
•  At meeting, go around the table raising one issue at a time

–  Discuss the reasons for the current design, and possible
improvements

•  Author takes all printouts and addresses all issues
–  Not just those raised in the meeting

CSE403 Sp12

Code Reviews at Google

•  "All code that gets submitted needs to be reviewed by
at least one other person, and either the code writer
or the reviewer needs to have readability in that
language. Most people use Mondrian to do code
reviews, and obviously, we spend a good chunk of
our time reviewing code.“

 --Amanda Camp, Software Engineer, Google

CSE403 Sp12 17

Code reviews at Yelp

•  “At Yelp we use review-board. An engineer works on
a branch and commits the code to their own branch.
The reviewer then goes through the diff, adds inline
comments on review board and sends them back.
The reviews are meant to be a dialogue, so typically
comment threads result from the feedback. Once the
reviewer's questions and concerns are all addressed
they'll click ‘Ship It!’ and the author will merge it with
the main branch for deployment the same day.”

 -- Alan Fineberg, Software Engineer, Yelp

CSE403 Sp12 18

Code reviews at WotC

•  “At Wizards we use Perforce for SCM. I work with
stuff that manages rules and content, so we try to
commit changes at the granularity of one bug at a
time or one card at a time. Our team is small enough
that you can designate one other person on team as
a code reviewer. Usually you look at code sometime
that week, but it depends on priority. It’s impossible to
write sufficient test harnesses for the bulk of our
game code, so code reviews are absolutely critical.”

 -- Jake Englund, Software Engineer, MtGO

CSE403 Sp12 19

Code reviews at Facebook

•  “At Facebook, we have an internally-developed web-based tool to aid
the code review process. Once an engineer has prepared a change,
she submits it to this tool, which will notify the person or people she has
asked to review the change, along with others that may be interested in
the change -- such as people who have worked on a function that got
changed.

“At this point, the reviewers can make comments, ask questions,
request changes, or accept the changes. If changes are requested, the
submitter must submit a new version of the change to be reviewed. All
versions submitted are retained, so reviewers can compare the change
to the original, or just changes from the last version they reviewed.
Once a change has been submitted, the engineer can merge her
change into the main source tree for deployment to the site during the
next weekly push, or earlier if the change warrants quicker release.”

 --Ryan McElroy, Software Engineer, Facebook
CSE403 Sp12 20

Code review exercise

public class Account {
 double principal,rate; int daysActive,accountType;

 public static final int STANDARD=0, BUDGET=1,
 PREMIUM=2, PREMIUM_PLUS=3;
}
...
public static double calculateFee(Account[] accounts)
{
 double totalFee = 0.0;
 Account account;
 for (int i=0;i<accounts.length;i++) {
 account=accounts[i];
 if (account.accountType == Account.PREMIUM ||
 account.accountType == Account.PREMIUM_PLUS)
 totalFee += .0125 * (// 1.25% broker's fee
 account.principal * Math.pow(account.rate,
 (account.daysActive/365.25))
 - account.principal); // interest-principal
 }
 return totalFee;
}

What feedback would you give
the author? What changes
would you request before

checkin?

CSE403 Sp12 21

CSE403 Sp12

Improved code (page 1)
/** An individual account. Also see CorporateAccount. */
public class Account {
 private double principal;
 /** The yearly, compounded rate (at 365.25 days per year). */
 private double rate;
 /** Days since last interest payout. */
 private int daysActive;
 private Type type;

 /** The varieties of account our bank offers. */
 public enum Type {STANDARD, BUDGET, PREMIUM, PREMIUM_PLUS}

 /** Compute interest. **/
 public double interest() {
 double years = daysActive / 365.25;
 double compoundInterest = principal * Math.pow(rate, years);
 return compoundInterest – principal;
 }

 /** Return true if this is a premium account. **/
 public boolean isPremium() {
 return accountType == Type.PREMIUM ||
 accountType == Type.PREMIUM_PLUS;
 }

CSE403 Sp12

Improved code (page 2)
 /** The portion of the interest that goes to the broker.

**/
 public static final double BROKER_FEE_PERCENT = 0.0125;

 /** Return the sum of the broker fees for all the given

accounts. **/
 public static double calculateFee(Account accounts[]) {
 double totalFee = 0.0;
 for (Account account : accounts) {
 if (account.isPremium()) {
 totalFee += BROKER_FEE_PERCENT *

account.interest();
 }
 }
 return totalFee;

}

}

