
4/2/2012

1

Week 2

Monday Tuesday Wednesday Thursday Friday

•Requirements
• Ambiguity

• Don’t write

requirements in a

bad mood

• Why

requirements?

• Kinds of

requirements

• Use cases

•Group

meetings –

let your

group TA

know where

you meet

•Team work

and

structure

•SRS

information

•Agile

CSE403 ● Software engineering ● sp12

A sign once outside the Blue Moon Tavern:

“We are not allowed to advertise that we sell beer here.”

Ambiguity

On the street in front of a

veterinarian’s office: “Please

keep these parking spaces

available for patients.”

CSE403 Sp12 2

Shoes Must

Be Worn

Dogs Must

Be Carried

Must I carry a dog?

What about the new shoes in my

shopping bag?

Do dogs have to wear shoes?

What about an amputee? A single

shoe? A double amputee?

What are shoes?

What are dogs?

Collect ‘em, Share

‘em with your

friends!

CSE403 Sp12 3

Formalize

• Formalization does not by itself ensure unambiguous

requirements

• The formalizations say “dogs are carried” and “shoes are worn”

while the signs say “must be” – a difference in grammatical mood

– Indicative mood: pertinent facts about the world ● “Each seat is

located in one and only one theater.”

– Optative mood: objectives of the system ● “Better seats should

be allocated before worse seats at the same price.”

• Principle of uniform mood: Indicative and optative properties

should be entirely separated in documents (a) to reduce author

and reader confusion and (b) to help identify problems

• If the software works right, both sets of properties will hold as facts

x(OnEscalator(x)y(PairOfShoes(y)IsWearing(x,y))
x((OnEscalator(x)IsDog(x))IsCarried(x)

Must I carry a dog? No ● What about the new shoes in my

shopping bag? No ● Do dogs have to wear shoes? Amputee?

Double amputee? Yes ● What are shoes, dogs? Designations vs. definitions [M. Jackson]

• Designations are atomic phenomena – asserted, not proven or

provable, connecting the domain to the system

– Mother(m,x) // m is x’s genetic mother

• Definitions define terms using designations and other definitions

– Child(x,m)  Mother(m,x)
Grandmother(m,x)  y(Mother(m,y)Mother(y,x))

• Use as few designations as possible

• Allows precision (even without formalism) and refutability

– T/F? m,x (Mother(m,x)Mother(x,m))

– T/F? x,y,m (Mother(m,x)Mother(m,y))x=y

– May help understand if the designations/definitions make

sense in the domain

CSE403 Sp12 4

Requirements documents should

• avoid mood mixing

• use precise language – make sure to designate or

define common terms that you are using with a

specific meaning

CSE403 Sp12 5

Abstractions are key to requirements

• Y2K was (in a sense) a requirements problem

– coders didn't consolidate date logic in one place

• Another lesson from Y2K: “Premature optimization is the

root of all evil.” – Donald Knuth

– should have had a requirement such as: “The

system must be easily modified to work in years 2000.”

• DRY principle: Don't Repeat Yourself

– Abstractions live longer than details

– A good abstraction allows appropriate change

– But don’t forget that ultimately your abstractions

have to represent something useful in the domain

CSE403 Sp12 6

http://upload.wikimedia.org/wikipedia/commons/4/4b/Aiga_escalator.gif
http://en.wikipedia.org/wiki/Grammatical_mood

4/2/2012

2

Why requirements?
Requirements: Goals and Roles

• Understand precisely
what is required

• Communicate this
understanding
precisely to all parties

• Control production to
ensure that system
satisfies the (final)
requirements

• Customers: show
what should be
delivered

• Managers: a
scheduling and
progress indicator

• Designers: provide a
basis for design

• QA/testers: a basis for
testing, validation,
verification

• …

CSE403 Sp12 8

• The system will enforce 6.5% sales tax on

Washington purchases

• The system shall display the elapsed time for the car

to make one circuit around the track within five

seconds, in hh:mm:ss format

• The product will never crash. It will also be secure

against hacks

• The system will support a large number of

connections at once, and each user will not

experience slowness or lag

• The user can choose a document type from the drop-

down list
CSE403 Sp12 9

Good or bad requirements? Why?

Extra credit

Classifying requirements

• functional: identify inputs and outputs of computation

– “A user search is with respect to one or more of

the defined databases.”

– “Every order is assigned a unique ID that the user

can save.”

• nonfunctional: other such as performance,

dependability, reusability, safety, …

– “Our deliverable documents shall conform to the

XYZ process.”

– “The system shall not disclose any personal user

information.”

CSE403 Sp12 An alternative classification by Faulk in Reading II

“Digging” for requirements

Do

• Engage with the users to

learn how they work

• Ask questions throughout

the process

• Think about why users

will do something in your

system, not just what

• Allow and expect

requirements to change

later

Don’t

• Describe complex

business logic or rules

• Be too specific or detailed

• Describe the exact user

interface

• Try to think of everything

ahead of time

• Add unnecessary

features the customers

don’t want

CSE403 Sp12 11

Benefits of working with customers

• Good relations
improve actual and
perceived
development speed

• Helps them figure
out what they want

• Helps them change
what they want
more smoothly over
time

• The #1 reason that

projects succeed is

user involvement

[Standish Group]

• Easy access to end

users is a critical

success factor in

rapid-development

projects [McConnell]

CSE403 Sp12 12

4/2/2012

3

“What” vs. “How”

• The conventional view is that requirements tell "what"

to build and not "how“ to build

• They reflect the problem, not the solution

• One person’s what is another person’s how  “One

person’s constant is another person’s variable.” [Perlis]

CSE403 Sp12 14

• Input file processing is the what, parsing is the how

• Parsing is the what, a stack is the how

• A stack is the what, an array or a linked list is the how

• A linked list is the what, a doubly linked list is the how

World and machine [Jackson]
Alternative to what vs. how

• The customer’s requirements are in the application

domain (the world)

• The program defines software (the machine) that has

an effect in the world – for example, a database

system dealing with books

• There are things in the world not represented by a

given machine – for examples, book sequels or

trilogies, pseudonyms, anonymous books, …

• Similarly, there are things in the machine that don’t

represent anything in the world – for example, null

pointers, deleting a record, back pointers, …

CSE403 Sp12 15

How do we specify requirements?

• It varies, but usually some combination of

– Prototype

– Use Cases

– Feature List

– Paper UI prototype

• You will create a System Requirements Specification (SRS)

document using structured natural language along with figures,

use cases, etc.

– I Although not ideal,

• I.A structured natural language is almost always better

– I.A.ii than unstructured natural language.

» I.A.ii.3 Unless the structure is an

» I.A.ii.3.q excuse to avoid content

CSE403 Sp12 16

Cockburn's requirements template

• purpose and scope

• terms / glossary

• use cases (the central artifact of

requirements)

• technology used

• other

– development process, participants,

values (fast-good-cheap), visibility,

competition, dependencies, business

rules/constraints, performance

demands, security, documentation,

usability, portability, unresolved and

deferred, human issues: legal, political,

organizational, training

CSE403 Sp12 17

Use cases

• A use case is an example behavior of the system,

representing specific flows of events in the system

• A use case characterizes a way of using a system

• It represents a dialog between a user and the

system, from the user’s point of view

• It captures functional requirements

– Ex: Robin has a meeting at 10AM; when Cameron

tries to schedule another meeting for Robin at

10AM, Cameron is notified about the conflict

• Similar to CRC (class responsibility collaborator) and

eXtreme programming “stories”

CSE403 Sp12 18

4/2/2012

4

Jacobson example: recycling

• The course of events starts when the customer presses the

“Start-Button” on the customer panel. The panel’s built-in

sensors are thereby activated.

• The customer can now return deposit items via the customer

panel. The sensors inform the system that an object has been

inserted, they also measure the deposit item and return the

result to the system.

• The system uses the measurement result to determine the type

of deposit item: can, bottle or crate.

• The day total for the received deposit item type is incremented

as is the number of returned deposit items of the current type

that this customer has returned...

CSE403 Sp12 19

Another example: Buy a product
http://ontolog.cim3.net/cgi-bin/wiki.pl?UseCasesSimpleTextExample

1. Customer browses through catalog and selects items to buy

2. Customer goes to check out

3. Customer fills in shipping information

4. System presents full pricing information, including shipping

5. Customer fills in credit card information

6. System authorizes purchase

7. System confirms sale immediately

8. System sends confirming email to customer

9. Alternative: Authorization Failure

1. At step 6, system fails to authorize credit purchase

2. Allow customer to re-enter credit card information and re-try

10. Alternative: Regular Customer

1. 3a. System displays current shipping information, pricing information, and

last four digits of credit card information

2. 3b. Customer may accept or override these defaults

3. Return to primary scenario at step 6

CSE403 Sp12 20

Qualities of a good use case

• starts with a request from an actor to the system

• ends with the production of all answers to the request

• defines the interactions, between system and actors,

related to the function

• from the actor's point of view, not the system's

• focuses on interaction

• doesn't describe the GUI in detail

• has 3-9 steps in the main success scenario

• is easy to read, summary fits on a page

CSE403 Sp12 21

Benefits of use cases

• Establish an understanding between the customer

and the system developers of the requirements

(success scenarios)

• Alert developers to problematic situations (extension

scenarios)

• Capture a level of functionality to plan around (list of

goals)

CSE403 Sp12 22

Terminology

• Actor: someone/something who/that interacts with a

use case; it could be a human, external hardware

(like a timer), or another system

• Primary actor: actor initiating the action

• Goal: desired outcome of the primary actor

• Level: top-level or implementation

– summary goals

– user goals

– subfunctions

 CSE403 Sp12 23

Use case summary diagrams

The overall list of your system's use cases can be drawn as high-

level (UML-like) diagrams, with

• actors as stick-figures with names (nouns)

• use cases as ovals with names (verbs)

• line associations that connect an actor to a use case in which

that actor participates

• use cases can be connected to other cases that they use

CSE403 Sp12 24

Library patron

Check out book

4/2/2012

5

CSE403 Sp12 25

Library System

Search

Record new

Reserve

Check out

Librarian

Library Patron

Gen catalog

Investment System

CSE403 Sp12 26

Are use cases good for these?

• Which of these requirements should be represented

directly in a use case?

– Order cost = order item costs * 1.06 tax.

– Promotions may not run longer than 6 months.

– Customers only become Preferred after 1 year

– A customer has one and only one sales contact

– Response time is less than 2 seconds

– Uptime requirement is 99.8%

– Number of simultaneous users will be 200 max

• None – many are non-functional requirements, others

are core computation not based on interaction

– Maybe the promotions, preferred, and sales contact would

be handled in part with a use case
CSE403 Sp12 27

Use case summary diagrams

Actor Goal

Library Patron Search for a book

Check out a book

Return a book

Librarian Search for a book

Check availability

Request a book from another library

CSE403 Sp12 28

It can be useful to list the primary actors and their

“goals” – the use cases they start

Informal use case

• An alternative, often combined with diagrams, is an

informal use case written as a paragraph describing

the interaction

• Ex: Patron Loses a Book.

The library patron reports to the librarian that she has

lost a book. The librarian prints out the library record

and asks patron to speak with the head librarian, who

will arrange for the patron to pay a fee. The system

will be updated to reflect lost book, and patron's

record is updated as well. The head librarian may

authorize purchase of a replacement book.

CSE403 Sp12 29

Formal use case: another approach

Goal
Patron wishes to reserve a book using

the online catalog

Primary actor Patron

Scope Library system

Level User

Precondition Patron is at the login screen

Success end condition Book is reserved

Failure end condition Book is not reserved

Trigger Patron logs into system

CSE403 Sp12 30

4/2/2012

6

Main Success Scenario 1. Patron enters account and password

2. System verifies and logs patron in

3. System presents catalog with search screen

4. Patron enters book title

5. System finds match and presents location

choices to patron

6. Patron selects location and reserves book

7. System confirms reservation and re-presents

catalog

Extensions

(error scenarios)

2a. Password is incorrect

 2a.1 System returns patron to login screen

 2a.2 Patron backs out or tries again

5a. System cannot find book

 5a.1 …

Variations

(alternative scenarios)

4. Patron enters author or subject

CSE403 Sp12 31

Creating a use case

• Identify actors and their goals

– What computers, subsystems and people will drive our

system? (actors)

– What does each actor need our system to do? (goals)

• Consider software for a video store kiosk with no clerk

– A customer with an account can use their membership and credit

card to check out a video

– The software can look up movies and actors by keywords

– A customer can check out up to 3 movies, for 5 days each

– Late fees can be paid at the time of return or at next checkout

• Exercises: (1) Name four use cases, and draw a UML-like use case

summary diagram of the cases and their actors; (2) Write a formal use

case for the Customer Checks Out a Movie scenario

CSE403 Sp12 32

Creating a use case

• Write the success scenario

– This preferred “happy path” is easiest to read and

understand, with everything else is a complication

on this

– Capture each actor's intent and responsibility,

from trigger to goal delivery – say what information

passes between them and number each line

• List the variations

– Label variations with step number and alternative

• 5’. Alternative 1 for step 5

• 5’’. Alternative 2 for step 5

CSE403 Sp12 33

What notation is good?

• There are standard templates for requirements

documents, diagrams, etc. with specific rules. Is this

a good thing? Should we use these standards or

make up our own?

– Good: standards are helpful as a template or

starting point; others are more likely to understand

– But don't be a slave to formal rules or use a

model/scheme that doesn't fit your project's needs

CSE403 Sp12 34

Pulling it all together

CSE403 Sp12 35

How much is enough?

You have to find a balance

 comprehensible vs. detailed

 graphics vs. explicit wording and tables

 short and timely vs. complete and late

Your balance may differ with each customer

depending on your relationship and flexibility

Feature creep: a warning!

• Gradual accumulation of features over time

– Often has a negative overall effect on a large

software project

• Why does feature creep happen? Why is it bad?

• Because features are “fun”

– developers like to code them

– marketers like to brag about them

– users want them

– ... but too many – “it’s OK, just one more” – means

more bugs, more delays, less testing, ...

CSE403 Sp12 36

4/2/2012

7

CSE403 Sp12 37

Any questions

Week 2

Monday Tuesday Wednesday Thursday Friday

•Requirements
• …

•Group

meetings –

let your

group TA

know where

you meet

•Team work

and

structure

•SRS

information

•Agile

• Announcements now only on GoPost Announcements section

• Reading I: due tonight @ 11PM on DropBox
https://catalyst.uw.edu/collectit/dropbox/notkin/20734

• Weekly team summary: due Friday @ 11PM on DropBox by each PM

• SRS: due Tuesday April 10 @ 11PM on DropBox by each PM

https://catalyst.uw.edu/collectit/dropbox/notkin/20734
https://catalyst.uw.edu/collectit/dropbox/notkin/20734
https://catalyst.uw.edu/collectit/dropbox/notkin/20734

