		Week 2							
Monday	Tuesday	Wednesday	Thursday	Friday					
lequirements Ambiguity Don't write requirements in a bad mood Why requirements? Kinds of requirements Use cases	• Group meetings – let your group TA know where you meet	Team work and structure	• SRS information	• Agile					

Requirements documents should

use precise language - make sure to designate or

define common terms that you are using with a

CSE403 Sp12

- Y2K was (in a sense) a requirements problem
 - coders didn't consolidate date logic in one place
 Another lesson from Y2K: "Premature optimization is the root of all evil." – Donald Knuth
 - should have had a requirement such as: "The system must be easily modified to work in years ≥2000."
- DRY principle: Don't Repeat Yourself
 - Abstractions live longer than details
 - A good abstraction allows appropriate change
 - But don't forget that ultimately your abstractions have to represent something useful in the domain

CSE403 Sp12

CSE403 Sp12

· avoid mood mixing

specific meaning

Requirements: Goals and Roles

- Understand precisely what is required
- Communicate this understanding precisely to all parties
- Control production to ensure that system satisfies the (final) requirements
- Customers: show what should be delivered
- Managers: a scheduling and progress indicator
 Designers: provide a
- basis for design QA/testers: a basis for testing, validation,

CSE403 Sp12

 QA/testers: testing, vali verification

• ...

Good or bad requirements? Why?

- The system will enforce 6.5% sales tax on Washington purchases
- The system shall display the elapsed time for the car to make one circuit around the track within five seconds, in hh:mm:ss format
- The product will never crash. It will also be secure against hacks
- The system will support a large number of connections at once, and each user will not experience slowness or lag
- The user can choose a document type from the dropdown list

CSE403 Sp12

"Digging" for requirements

Do

- Engage with the users to learn how they work
- Ask questions throughout
 the process
- Think about why users will do something in your system, not just what
- Allow and expect requirements to change later

CSE403 Sp12

Don't

- Describe complex
 business logic or rules
- Be too specific or detailed
- Describe the exact user interface
- Try to think of everything ahead of time
- Add unnecessary features the customers don't want

11

Extra credit

Benefits of working with customers

- Good relations improve actual and perceived development speed
- Helps them figure out what they want
- Helps them change what they want more smoothly over time

CSE403 Sp12

- The #1 reason that projects succeed is user involvement [Standish Group]
- Easy access to end users is a critical success factor in rapid-development projects [McConnell]

World and machine [Jackson] Alternative to what vs. how

- · The customer's requirements are in the application domain (the world)
- The program defines software (the machine) that has an effect in the world - for example, a database system dealing with books
- There are things in the world not represented by a given machine - for examples, book sequels or trilogies, pseudonyms, anonymous books, ...
- Similarly, there are things in the machine that don't represent anything in the world - for example, null pointers, deleting a record, back pointers, ...

15

CSE403 Sp12

CSE403 Sp12

Jacobson example: recycling

- The course of events starts when the customer presses the "Start-Button" on the customer panel. The panel's built-in sensors are thereby activated.
- The customer can now return deposit items via the customer panel. The sensors inform the system that an object has been inserted, they also measure the deposit item and return the result to the system.
- The system uses the measurement result to determine the type of deposit item: can, bottle or crate.
- The day total for the received deposit item type is incremented as is the number of returned deposit items of the current type that this customer has returned...

CSE403 Sp12

Qualities of a good use case

- · starts with a request from an actor to the system
- · ends with the production of all answers to the request
- defines the interactions, between system and actors, related to the function
- · from the actor's point of view, not the system's
- · focuses on interaction
- · doesn't describe the GUI in detail
- · has 3-9 steps in the main success scenario
- · is easy to read, summary fits on a page

CSE403 Sp12

21

19

Terminology

- <u>Actor</u>: someone/something who/that interacts with a use case; it could be a human, external hardware (like a timer), or another system
- Primary actor: actor initiating the action
- Goal: desired outcome of the primary actor
- Level: top-level or implementation
- summary goals
- user goals
- subfunctions

CSE403 Sp12

23

Are use cases good for these?

- Which of these requirements should be represented directly in a use case?
 - Order cost = order item costs * 1.06 tax.
 - Promotions may not run longer than 6 months.
 - Customers only become Preferred after 1 year
 - A customer has one and only one sales contact
 - Response time is less than 2 seconds
 - Uptime requirement is 99.8%
 - Number of simultaneous users will be 200 max
- None many are non-functional requirements, others are core computation not based on interaction
 - Maybe the promotions, preferred, and sales contact would

be handled in part with a use case CSE403 Sp12

Use case summary diagrams

Actor	Goal
Library Patron	Search for a book
	Check out a book
	Return a book
Librarian	Search for a book
	Check availability
	Request a book from another library
t can be useful to li goals" – the use ca	st the primary actors and their ses they start
E403 Sp12	

Informal use case

 An alternative, often combined with diagrams, is an informal use case written as a paragraph describing the interaction

Ex: **Patron Loses a Book.** The library patron reports to the librarian that she has lost a book. The librarian prints out the library record and asks patron to speak with the head librarian, who will arrange for the patron to pay a fee. The system will be updated to reflect lost book, and patron's record is updated as well. The head librarian may authorize purchase of a replacement book.

CSE403 Sp12

29

27

Formal use case: another approach

Goal	Patron wishes to reserve a book using the online catalog
Primary actor	Patron
Scope	Library system
Level	User
Precondition	Patron is at the login screen
Success end condition	Book is reserved
Failure end condition	Book is not reserved
Trigger	Patron logs into system

CSE403 Sp12

Main Success Scenario	Patron enters account and password System verifies and logs patron in System presents catalog with search screen Patron enters book title System finds match and presents location	
	 choices to patron Patron selects location and reserves book System confirms reservation and re-presents catalog 	
Extensions (error scenarios)	2a. Password is incorrect 2a.1 System returns patron to login screen 2a.2 Patron backs out or tries again 5a. System cannot find book 5a.1	
Variations (alternative scenarios)	4. Patron enters author or subject	

Creating a use case

· Write the success scenario

- This preferred "happy path" is easiest to read and understand, with everything else is a complication on this
- Capture each actor's intent and responsibility, from trigger to goal delivery – say what information passes between them and number each line

List the variations

- Label variations with step number and alternative
 - 5'. Alternative 1 for step 5
 - 5". Alternative 2 for step 5

CSE403 Sp12

Pulling it all together

How much is enough?

You have to find a balance comprehensible vs. detailed graphics vs. explicit wording and tables short and timely vs. complete and late

Your balance may differ with each customer depending on your relationship and flexibility

CSE403 Sp12

35

33

Week 2								
Monday	Tuesday	Wednesday	Thursday	Friday				
• Requirements	• Group meetings – let your group TA know where you meet	Team work and structure	• SRS information	• Agile				

Announcements now only on GoPost Announcements section
 Reading I: due tonight @ 11PM on DropBox https://catalyst.uw.edu/collectit/dropbox/notkin/20734
 Weekly team summary: due Friday @ 11PM on DropBox by each PM
 SRS: due Tuesday April 10 @ 11PM on DropBox by each PM

Any questions? CSE403 Sp12

37