CSE403 e Software engineering e sp12

Week 7-10

Wednesday | Thursday

Friday

* Progress report due
*Readings out (see

next slide)
* Midterm » Groups * Midterm Il *No * Information on final
review * Reading section presentations, etc.
covered *Course evals
[Notkin gone] * Progress report due

Memorial Day | * Groups | *Final release | ¢ Project |« Project Pres. lli
Holiday due Pres. I
* Project Pres. |

CSE403 Spl2 1

Reading for Midterm |

 Managing Technical Debt
Eric Allman
Communications of the ACM
Vol. 55 No. 5, Pages 50-55
10.1145/2160718.2160733

http://cacm.acm.org/magazines/2012/5/148568-managing-technical-debt/fulltext

CSE403 Sp12

Refactoring

« Belady and Lehman’s (1974) Law of Increasing
Complexity

— As a [software] system evolves its complexity
increases unless work is done to maintain or
reduce it

 In other words, it is natural for a program’s structure
to degrade over time

« Work done “to maintain or reduce” the program’s
complexity is not directly beneficial — it doesn’t make
the program do more, do it more quickly, or such

CSE403 Sp12

Hence...

v General:1 (22%.16%) - Root M=]E3

Y

Software system
structures tend to
degrade in practice

Not only are they
complex, but they
are highly likely to
be incidentally
complex more than
essentially complex
[Brooks]

] i =

Adjust window size to fit all nodes

CSE403 Sp12 4

Rewritten or abandoned

* As months pass and new versions are developed,
many codebases reach one of the following states

— rewritten: Nothing remains from the original code.

— abandoned: The original code is thrown out and
rewritten from scratch.

— ...even if the code was initially reviewed and well-
designed at the time of check-in, and even if
check-ins are reviewed

CSE403 Sp12

“Bit rot”

« Why does the code structure degrade?

— Systems evolve to meet new needs and add new
features

— |If the code's structure does not also evolve, it will
“rot”

— And the value-proposition for maintaining or
Improving the code structure is hard to see and
evaluate

CSE403 Sp12

Maintenance

* Modification of a software product after delivery
— fix bugs
— Improve performance
— Improve design
— add features

« ~80% of maintenance is for non-bug-fix-related
activities such as adding functionality (Pigosky 1997)

CSE403 Sp12

Maintenance is hard

It's harder to maintain code than write new code

— must understand code written by another developer,
or code you wrote at a different time with a different mindset

— danger of errors in fragile, poorly-understood code (don't
touch it!)

Maintenance is how devs spend most of their time
— Many developers hate code maintenance. Why?

With good design and advance planning, maintenance is less
painful

— Capacity for future change must be anticipated

Q: If maintenance is harder than writing new code, why is it
assigned more frequently to newbies?

CSE403 Sp12

Refactoring

« Improving a piece of software's internal structure
without altering its external behavior

— Incurs a short-term time/work cost to reap long-
term benefits

— A long-term investment in the overall quality of
your system

 refactoring is not the same thing as
— rewriting code
— adding features
— debugging code

CSE403 Sp12

Why refactor?

« Each part of your code has three purposes
— to execute its functionality,
— to allow change,
— to communicate well to developers who read it

« Code that is weak in any of these dimensions can be
Improved

« Refactoring improves software's design
— more extensible, flexible, understandable, faster,

— Every design improvement has costs (and risks)

CSE403 Sp12

Code “smells™: Signs you should refactor

« Duplicated code

« Poor abstraction (change one place — must change
others)

« Large loop, method, class, parameter list; deeply nested
loop

* Module has too little cohesion
* Modules have too much coupling
 Module has poor encapsulation

* A “middle man” object doesn't do much (e.g., a “weak
subclass” doesn’t use inherited functionality)

* Dead code
« Design is unnecessarily general
* Design is too specific

CSE403 Spl2 11

Low-level refactoring

« Names

— Renaming (methods, variables)

— Naming (extracting) “magic” constants
* Procedures

— Extracting code into a method

— Extracting common functionality (including duplicate code)
into a module/method/etc.

— Inlining a method/procedure
— Changing method signatures

* Reordering:
— Splitting one method into several to improve cohesion and
readability (by reducing its size)
— Putting statements that semantically belong together near
each other

CSE403 Sp12

IDE support for refactoring

// Compress original output and put it into byte array.
tempOut.write (new String(responseChars)):;

BECl ==t

Open Type Hierarc hy

 variable / method / class renaming
* method or constant extraction ey Openswerimponencation [BRI,

Cut
S e Copy D client

« extraction of redundant code P

hyted

L
S n I p pets //5ys| Source e : " + bvteStream.sizeill:
Local History Move...

* method signature change | Gt

onvert Anonymous Class to Nested...

— Convert Nested Type to Top Level...

« extraction of an interface from a type .

Push Down...

art millhouse. keytopic.tools.codeparser .KCode Extract Interface...

¢ m eth O d i n I i n i n g Use Supertype Where Possible...

- providing warnings about method
invocations with inconsistent
parameters

* help with self-documenting code
through auto-completion

CSE403 Sp12

Higher-level refactoring

« Refactoring to design patterns

« Exchanging risky language idioms with safer
alternatives

« Performance optimization

« Clarifying a statement that has evolved over time or is
unclear

« Compared to low-level refactoring, high-level is

— Not as well-supported by tools
— Much more important!

CSE403 Sp12

Recommended refactor plan

 When you identify an area of your system that
— Is poorly designed
— is poorly tested, but seems to work so far
— now needs new features
* What should you do?
— Write unit tests that verify the code's external correctness
* They should pass on the current, badly designed code
— Refactor the code.
« Some unit tests may break. Fix the bugs
— Add the new features
— As always, keep changes small, do code reviews, etc.

CSE403 Sp12

“I don't have time to refactor!”

« Refactoring incurs an up-front cost.
— some developers don't want to do it

— most management don't like it, because they lose time and gain
“nothing” (no new features)

* However...

— well-written code is much more conducive to rapid development
(some estimates put ROI at 500% or more for well-done code)

— finishing refactoring increases programmer morale
» developers prefer working in a “clean house”
* When to refactor?
— best done continuously (like testing) as part of the SE process
— hard to do well late in a project (like testing)
 Why?

CSE403 Sp12

Should startups refactor?

« Many small companies and startups skip refactoring
— “We're too small to need it!”

— “We can't afford it!”
* Reality

— Refactoring is an investment in quality of the

company's product and code base, often their prime
assets

— Many web startups are using the most cutting-edge
technologies, which evolve rapidly. So should the code

— If a key team member leaves (common in startups), ...
— If a new team member joins (also common), ...

CSE403 Sp12

Refactoring: reprise

- “Improving a piece of software's internal structure
without altering its external behavior”

« What does “without altering its external behavior”
mean”?

 How can we tell if a refactoring has left the behavior
unchanged?

e Do we care?

CSE403 Spl2 18

