
CSE403	 ● Software engineering ●	 sp12

Week 7-10
Monday Tuesday Wednesday Thursday Friday

• Reading due • Groups
• Beta due

• Section • Progress report due
• Readings out (see
next slide)

• Midterm
review

• Groups • Midterm II
• Reading
covered
[Notkin gone]

• No
section

• Information on final
presentations, etc.

• Course evals
• Progress report due

Memorial Day
Holiday

• Groups • Final release
due

• Project Pres. I

• Project
Pres. II

• Project Pres. III

CSE403 Sp12 1

Reading for Midterm II

•  Managing Technical Debt
Eric Allman
Communications of the ACM
Vol. 55 No. 5, Pages 50-55
10.1145/2160718.2160733
http://cacm.acm.org/magazines/2012/5/148568-managing-technical-debt/fulltext

CSE403 Sp12 2

Refactoring

•  Belady and Lehman’s (1974) Law of Increasing
Complexity
–  As a [software] system evolves its complexity

increases unless work is done to maintain or
reduce it

•  In other words, it is natural for a program’s structure
to degrade over time

•  Work done “to maintain or reduce” the program’s
complexity is not directly beneficial – it doesn’t make
the program do more, do it more quickly, or such

3 CSE403 Sp12

Hence…

•  Software system
structures tend to
degrade in practice

•  Not only are they
complex, but they
are highly likely to
be incidentally
complex more than
essentially complex
[Brooks]

CSE403 Sp12 4

Rewritten or abandoned

•  As months pass and new versions are developed,
many codebases reach one of the following states
–  rewritten: Nothing remains from the original code.
–  abandoned: The original code is thrown out and

rewritten from scratch.
–  …even if the code was initially reviewed and well-

designed at the time of check-in, and even if
check-ins are reviewed

CSE403 Sp12

“Bit rot”

•  Why does the code structure degrade?
–  Systems evolve to meet new needs and add new

features
–  If the code's structure does not also evolve, it will

“rot”
–  And the value-proposition for maintaining or

improving the code structure is hard to see and
evaluate

CSE403 Sp12 6

Maintenance

•  Modification of a software product after delivery
–  fix bugs
–  improve performance
–  improve design
–  add features

•  ~80% of maintenance is for non-bug-fix-related
activities such as adding functionality (Pigosky 1997)

CSE403 Sp12

Maintenance is hard

•  It's harder to maintain code than write new code
–  must understand code written by another developer,

or code you wrote at a different time with a different mindset
–  danger of errors in fragile, poorly-understood code (don't

touch it!)
•  Maintenance is how devs spend most of their time

–  Many developers hate code maintenance. Why?
•  With good design and advance planning, maintenance is less

painful
–  Capacity for future change must be anticipated

•  Q: If maintenance is harder than writing new code, why is it

assigned more frequently to newbies?

CSE403 Sp12

Refactoring

•  Improving a piece of software's internal structure
without altering its external behavior
–  Incurs a short-term time/work cost to reap long-

term benefits
–  A long-term investment in the overall quality of

your system
•  refactoring is not the same thing as

–  rewriting code
–  adding features
–  debugging code

CSE403 Sp12

CSE403 Sp12

Why refactor?

•  Each part of your code has three purposes

–  to execute its functionality,
–  to allow change,
–  to communicate well to developers who read it

•  Code that is weak in any of these dimensions can be
improved

•  Refactoring improves software's design
–  more extensible, flexible, understandable, faster,

…
–  Every design improvement has costs (and risks)

Code “smells”: Signs you should refactor

•  Duplicated code
•  Poor abstraction (change one place → must change

others)
•  Large loop, method, class, parameter list; deeply nested

loop
•  Module has too little cohesion
•  Modules have too much coupling
•  Module has poor encapsulation
•  A “middle man” object doesn't do much (e.g., a “weak

subclass” doesn’t use inherited functionality)
•  Dead code
•  Design is unnecessarily general
•  Design is too specific

CSE403 Sp12 11

CSE403 Sp12

Low-level refactoring

•  Names
–  Renaming (methods, variables)
–  Naming (extracting) “magic” constants

•  Procedures
–  Extracting code into a method
–  Extracting common functionality (including duplicate code)

into a module/method/etc.
–  Inlining a method/procedure
–  Changing method signatures

•  Reordering:
–  Splitting one method into several to improve cohesion and

readability (by reducing its size)
–  Putting statements that semantically belong together near

each other

CSE403 Sp12

IDE support for refactoring

•  variable / method / class renaming
•  method or constant extraction
•  extraction of redundant code

snippets
•  method signature change
•  extraction of an interface from a type
•  method inlining
•  providing warnings about method

invocations with inconsistent
parameters

•  help with self-documenting code
through auto-completion

Higher-level refactoring

•  Refactoring to design patterns
•  Exchanging risky language idioms with safer

alternatives
•  Performance optimization
•  Clarifying a statement that has evolved over time or is

unclear

•  Compared to low-level refactoring, high-level is
–  Not as well-supported by tools
–  Much more important!

CSE403 Sp12

Recommended refactor plan

•  When you identify an area of your system that
–  is poorly designed
–  is poorly tested, but seems to work so far
–  now needs new features

•  What should you do?
–  Write unit tests that verify the code's external correctness

•  They should pass on the current, badly designed code
–  Refactor the code.

•  Some unit tests may break. Fix the bugs
–  Add the new features
–  As always, keep changes small, do code reviews, etc.

CSE403 Sp12

“I don't have time to refactor!”

•  Refactoring incurs an up-front cost.
–  some developers don't want to do it
–  most management don't like it, because they lose time and gain

“nothing” (no new features)
•  However...

–  well-written code is much more conducive to rapid development
(some estimates put ROI at 500% or more for well-done code)

–  finishing refactoring increases programmer morale
•  developers prefer working in a “clean house”

•  When to refactor?
–  best done continuously (like testing) as part of the SE process
–  hard to do well late in a project (like testing)

•  Why?

CSE403 Sp12

CSE403 Sp12

Should startups refactor?

•  Many small companies and startups skip refactoring
–  “We're too small to need it!”
–  “We can't afford it!”

•  Reality
–  Refactoring is an investment in quality of the

company's product and code base, often their prime
assets

–  Many web startups are using the most cutting-edge
technologies, which evolve rapidly. So should the code

–  If a key team member leaves (common in startups), ...
–  If a new team member joins (also common), ...

Refactoring: reprise

•  “Improving a piece of software's internal structure
without altering its external behavior”

•  What does “without altering its external behavior”
mean?

•  How can we tell if a refactoring has left the behavior
unchanged?

•  Do we care?

CSE403 Sp12 18

