
3/28/2012

1

Week 1

Monday Tuesday Wednesday Thursday Friday

• Overview

• Course

plans &

expectations

• Tools &

tool

questions

(section)

• Lifecycle &

project

milestones

• KNOW project

overview
• JB office hours

2-3PM Atrium

• No section
• JB office hours

11:30AM-12:30 PM

Atrium

• DN office hours

9:00-10:00AM &

11:30-noon

Proposal descriptions

& slides by 9:30AM

• Proposal

presentations

Project & team

preferences by 11PM

Teams announced by

11PM Saturday

CSE403 ● Software engineering ● sp12

Cycle

Life

Software Software development lifecycle
the power of process

Two goals of software engineering
Barry Boehm

• Building the right system

– Validation: Does the program meet the users’

needs?

• Building the system right

– Verification: Does the program meet the

specification?

CSE403 Sp12 2

The software lifecycle

• These goals – software that works as specified and
software that meets users’ needs – are hard to
achieve for substantive systems

• The lifecycle is a series of steps or phases through
which software is produced – usually over months or
years, from womb to tomb

• It is a process by which teams of people can create
complex software systems

• The lifecycle helps teams deal with complexity by
laying out a clear set of steps to perform and
associate tangible artifacts that can be assessed to
determine progress, quality, etc.

CSE403 Sp12 3

What is complexity?

Dictionary.com. Collins English

Dictionary - Complete & Unabridged

10th Edition. HarperCollins

(accessed: March 27, 2012).

“The state or quality

of being intricate…”

4

Complexity in computation

• How much resource – usually time or space – is

needed, based on the size of the input, to solve a

specific problem using a precise model?

– Lower bound: best possible

– Upper bound: best known

• Kolmogorov complexity represents the shortest

possible representation of a (often a program to

compute) value

– 231542 vs.

4522134566.3232335425256788888532212232342342346666193

• Fred Brooks: Essential vs. incidental complexity

CSE403 Sp12 5

How complex is software?
Possible measures include

• lines of code

• # classes

• # modules

• # module interconnections and dependencies

• # paths: cyclomatic complexity takes a control flow graph

(roughly, a “flow chart”) of a program and computes E − N + 2P

– E = the number of edges of the graph

– N = the number of nodes of the graph

– P = the number of connected components (exit nodes)

• time to understand

• # of authors

• … many more

CSE403 Sp12 6

https://docs.google.com/a/cs.washington.edu/document/d/1CJmrFtQNsStlSIXurXEk3CqEC_VJwXGcOv4lpaS4Pr0/edit
http://www.cs.washington.edu/education/courses/cse403/12sp/project-proposals.html
http://www.cs.washington.edu/education/courses/cse403/12sp/project-proposals.html
https://catalyst.uw.edu/webq/survey/notkin/162305
https://catalyst.uw.edu/webq/survey/notkin/162303
https://depts.washington.edu/knowjsis/home/
http://informatics.indiana.edu/rocha/figures/IPP_3_clusters_labels.jpg
http://www.cs.washington.edu/homes/suinlee/figures/systems-genetics2.JPG
http://dictionary.reference.com/browse/complexity
http://dictionary.reference.com/browse/complexity

3/28/2012

2

Lines of Code

• LOC (SLoC – source

lines of code) are

frequently used to

characterize the size of a

software system

– Often used for cost

estimation

• May be as good a proxy

for complexity as

anything else

CSE403 Sp12 7

MSLoC (MLOC) 

Million Lines of Source Code

Windows Server 2003 50 MSLoC

Debian 5.0 324 MSLoC

Downside

• Paying people per

LOC isn’t smart

• If they refactor and

make the code better

but smaller, should

they pay you?

How big is 324 MLOC?

Left side of the room: in small groups estimate

how high 324 MLOC would be if you printed it

(assume 50 LOC/page, two-sided)

Right side of the room: in small groups estimate

how long it would take you to type 324 MLOC

(assume 5 words/LOC @ 50 wpm)

~13,000 inches  13x the height of the Allen Center

~32,000,000 min  61 years

no thinking  no sleeping  no breaks

Ideas about

how to think

about this?

CSE403 Sp12 8

How to get to 324 MLOC?

• …or even 1MLOC … or even 100KLOC …?

• Especially adding in some expectations of what the

program does, its correctness, etc.

CSE403 Sp12 9

Ad-hoc development

• Advantages

– Easy to learn

– Easy to use

• Disadvantages

– May ignore some

important tasks like

testing and design

– Unclear when to start or

stop each task

– Scales poorly to teams

– Hard to review/evaluate work

– Code may not match users’

needs – no requirements!

– Code likely to be inflexible

– No way to assess progress,
quality or risks

– Unlikely to accommodate
changes without a major
design overhaul

– Unclear delivery features
(scope), timing, and support

– …

Creating software without any formal guidelines or

process; ever done this for a project or assignment?

CSE403 Sp12 10

Also know as code-and-fix

• It doesn’t manage or tame complexity

• And the later a problem is found in software,

the more costly it is to fix

CSE403 Sp12 11

Managing complexity: break it down

• We identify different

activities that we know –

from experience – we will

have to do (such as testing)

• We identify different

milestones that we know –

from experience – we will

have to produce (such as

requirements)

• We identify different roles –

from experience – that

people will perform in a

project (such as designers)

• We identify a process that

increases our confidence

that people in those roles will

address all the activities

effectively and produce a

quality set of milestones

• The specifics of these

dimensions – people,

activities, milestones – and

the way they interact

characterizes different

lifecycles

CSE403 Sp12 12

3/28/2012

3

Parts of speech

• These are largely different sides of the same (three-

sided) coin

• It’s never 1:1:1

– An individual may be a programmer and a tester

– Multiple milestones will include designs

– …
13

Subject

Role

Verb

Activity

Object

Milestone

A designer designs a design

A programmer implements modules

A tester plans and runs tests

…

Milestones are also points in time –

deadlines – but they are accompanied by

deliverables

CSE403 Sp12

Benefits of using a lifecycle

• It provides a structure for organizing work

• It forces us to think of the “big picture” and follow

steps so that we reach it without glaring deficiencies

• Without it you may make decisions that are

individually on target but collectively misdirected

• It is a management tool

“…I have always found that plans are useless, but

planning is indispensable.” –D.D. Eisenhower

Drawbacks?

Extra credit

CSE403 Sp12 14

Project with little attention to process

Survival Guide: McConnell p. 24
CSE403 Sp12 15

With early attention to process

Survival Guide: McConnell p. 25 CSE403 Sp12 16

Some lifecycle models (past code-and-fix)

• waterfall: standard phases – requirements, design,

code, test, … – in order

• spiral: assess risks at each step; do most critical

action first

• staged delivery: build initial requirement

specifications for several releases, then design-and-

code each in sequence

• evolutionary prototyping: build an initial small

requirement specification, code it, then “evolve” the

specification and code as needed

• agile: very flexible, customer-oriented variations of

evolutionary prototyping (more coming next week)
CSE403 Sp12 17

Software

Requirements

Validation

System

Requirements

Validation

Preliminary

Design

Validation

Detailed

Design

Validation

Operations &

Maintenance

Revalidation

Test

Validation test

Code &

Debug

Development test

Waterfall model

CSE403 Sp12 18

http://www.stevemcconnell.com/sg.htm

3/28/2012

4

Waterfall model tradeoffs

• Can work well for well-

understood but

complex projects

– Tackles all planning

upfront

• Supports

inexperienced teams

– Orderly, easy-to-

follow sequential

model

– Reviews at each

stage determine if the

product is ready to

advance

• Hard to specify requirements of a

stage completely and correctly

upfront

• Rigid, linear, not adaptable to

change in the product

– Costly to "swim upstream"

• No sense of progress until end

– Nothing to show until almost done

("we're 90% done, I swear!")

• Integration occurs at the very end

– Defies “integrate early and

often” rule

– No feedback until end to

customer

CSE403 Sp12 19

Spiral model – risk-oriented

• Determine

objectives and

constraints

• Identify and

resolve risks

• Evaluate

options to

resolve risks

• Developer and

verify

deliverables

• Plan next spiral

• Commit (or not)

to next spiral

CSE403 Sp12 20

Spiral model – tradeoffs

• A lot of planning and

management

• Frequent changes of

task

• Requires customer

and contract

flexibility

• Must be able to

assess risk properly

• Take on the big

risks early, make

decisions

– Right product?

– Can we implement?

• Progresses carefully

to a result – clearer

tasks each spiral

• As costs increase,

risks decrease!

CSE403 Sp12 21

Staged delivery model

• Waterfall-like beginnings

• Then, short release cycles: plan, design, execute, test, release,

with delivery possible at the end of any cycle

CSE403 Sp12 22

Staged-delivery tradeoffs

• Can ship at the end of

any release cycle

• Intermediate deliveries

show progress, satisfy

customers, and lead to

feedback

• Problems are visible

early (e.g., integration)

• Facilitates shorter, more

predictable release

cycles

• Prioritize features

• Requires tight

coordination with

documentation,

management,

marketing

• Product must be

decomposable

• Extra releases cause

overhead

• Feature creep

CSE403 Sp12 23

Very practical, widely
used and successful

Evolutionary prototyping model

CSE403 Sp12 24

• Develop a

skeleton system

and evolve it for

delivery

• Staged delivery:

requirements are

known ahead of

time

• Evolutionary:

discovered by

customer feedback

on each release

3/28/2012

5

Evolutionary process

• Requires close customer involvement

• Assumes user's initial specification is flexible

• Problems with planning

– Feature creep, major design decisions, use of time, etc.

– Hard to estimate completion schedule or feature set

– Unclear how many iterations will be needed to finish

• Integration problems

• Temporary fixes become permanent constraints

CSE403 Sp12 25

Why are there so many models?

• The choice of a model depends on the project

circumstances and requirements

• A good choice of a model can result in a vastly more

productive environment than a bad choice

• A cocktail of models is frequently used in practice to

get the best of all worlds – models are often

combined or tailored to environment

• “Models” are as often descriptive as they are

prescriptive
– Parnas and Clements. A rational design process: How and why to

fake it. IEEE Trans. Software Eng. 12, 2 (Feb 1986), 251-257.

CSE403 Sp12 26

The “best” model depends on…

• The task at hand

• Risk management

• Quality / cost control

• Predictability

• Visibility of progress

• Customer involvement and feedback

• Team experience

• …

CSE403 Sp12 27

Better question: best model for …

• A system to control anti-lock braking in a car?

• A hospital accounting system that replaces an

existing system?

• An interactive system that allows airline passengers

to quickly find replacement flight times (for missed or

bumped reservations) from terminals installed at

airports?

• A specific 403 project?

CSE403 Sp12 28

CSE403 Sp12 29

Today Tomorrow Wednesday Thursday Friday

• Overview

• Course plans

& expectations

• Tools & tool

questions

(section)

• Lifecycle &

project

milestones

• KNOW

project

overview

• Form project

proposal

groups NOW
(if you haven’t yet)

• KNOW++: JB

office hours

• No section

• Meet with

your project

proposal

groups

• KNOW++: JB

office hours

• DN office

hours 9-10 &

11:30-12

Proposal

descriptions &

slides by 9:30AM

Posted on web

ASAP

• Proposal

presentations

Project & team

preferences by

11PM

Teams announced

by 11PM Saturday

Any questions

https://docs.google.com/a/cs.washington.edu/document/d/1CJmrFtQNsStlSIXurXEk3CqEC_VJwXGcOv4lpaS4Pr0/edit
http://www.cs.washington.edu/education/courses/cse403/12sp/project-proposals.html
http://www.cs.washington.edu/education/courses/cse403/12sp/project-proposals.html
http://www.cs.washington.edu/education/courses/cse403/12sp/project-proposals.html
https://catalyst.uw.edu/webq/survey/notkin/162305
https://catalyst.uw.edu/webq/survey/notkin/162303

