CSE403 e Software engineering e sp12

Monday Tuesday Wednesday | Thursday Friday
» Joel test & » Groups * Reviews «Section | *Progress report due
interviewing * Readings out
*No reading
* Reading due | * Groups » Section | «Progress report due
*Beta due * Readings out
*No reading | * Groups * Midterm || *No * Progress report due
due * Reading section
covered
[Notkin gone]
Memorial Day | «Groups |+ Final * Project |- Project Pres. Il
Holiday release due Pres. Il
* Project
Pres. |

CSE403 Spl2 1

Beta

« Continue along ZFR, adding function as planned

CSE403 Sp12

The Joel Test

:;é:g;&cm ngt[wa re

http://www.joelonsoftware.com/articles/fog000000004 3.html

CSE403 Sp12 3

The Joel Test In general, a score of

<= 10 means you're
in trouble.

Do you use source control?

Can you make a build in one step?

Do you make daily builds?

Do you have a bug database?

Do you fix bugs before writing new code?
Do you have an up-to-date schedule?

Do you have a spec?

Do you have quiet working conditions?

9. Do you use the best tools money can buy?
10. Do you have testers as part of the team?
11. Do you have interview candidates write code?
12. Do you do hallway usability testing?

NSO WDNh =

CSE403 Sp12 ,

Do you use source control?

« What are the benefits?
— Allows multiple developers
— Keep project in consistent state
— Track changes and enable roll-back
— Manage multiple versions
— Save data in case of a disaster
— Authoritative source for “daily build”

The ZFR should indicate the state of your repository.

CSE403 Sp12 5

Do you have a one-step build?

« A single script that
— [does a full checkout from scratch]
— rebuilds every line of code

— makes the binary executable files in all versions,
languages and #ifdef combinations

— [creates the installation package]
— [creates the final media - CDROM, web site, ...]

« All steps are automated and exercised regularly

* S0, why is this valuable?
CSE403 Sp12

Do you do a daily build and test?

« Build the entire product every day and run a good
test suite against the new version

— build from checked in sources
— automatic and frequent

— find out early that you’ve got problems and fix
them before disaster strikes

* Benefits
— Minimizes integration risk
— Reduces risk of low quality
— Supports easier defect diagnosis

— Improves morale - developers, managers,
customers

Do you use a bug database?

* You can’t keep the bug list in your head
— Especially with multiple developers and multiple customers

Moreover, looking at the history of bugs can be
insightful!

* To characterize a bug consider:
— how to reproduce it
— expected behavior, actual behavior
— responsible party, status, priority

For the beta release assignment, we'll be
asking to see a log of your bugs.

CSE403 Sp12

Do you fix bugs before writing new code?

Why not fix them later?

* Familiar with the code now
« Harder to find (and fix) later

« Later code may depend on this code (try building on
quicksand...)

« Bugs may reveal fundamental problems

* Leaving all bugs to the end will make it harder to
understand and keep the schedule

CSE403 Sp12

Do you have an up-to-date schedule?

« Keeps expectations realistic
— For the team, customers, stakeholders

« Allows for more accuracy
— Use experience to improve estimates
» Helps prevent feature creep

— Don’t take on anything without checking the
schedule first

Highlight any changes, and keep all
documents up to date.

CSE403 Sp12

10

Do you have a spec?

Easier to fix problems at the design stage

* You know what you are trying to build

— So do your teammates and customer

More likely that you build the right thing

— Pieces fit together

— Customer is satisfied

Conceptual integrity for your project
Undocumented code has no commercial value

CSE403 Sp12

Do you do hallway usability testing?

« Grab someone in the hallway and make them use
your code

 Key idea: get feedback fast
A little feedback now > lots of feedback later

* You will get most of the valuable feedback from the
first few users

— Brooks: you get infinite utility from your first user

CSE403 Spl2 12

Joel's Disclaimer

« These are not the only factors that determine success
or failure

— A great team will not help if you are building a
product no one wants

— An incredibly talented team might produce an
Incredible product without these guidelines

« But all things being equal, these factors indicate a
disciplined team that can consistently deliver

CSE403 Spl2 13

Other advice

Productive ProjeciSSi g =
< &#, . ' 5
o oy and Teams 398 :

g
D, L . A,

Second Edition Featuring Eight All-New Chapters
o VY B T R
v .’3 ‘4‘ “ *‘ o ‘ /a
)¢ ‘ ey
- Al'CU

: ’Ib .\‘,«5, g
Timothy Lister

CSE403 Sp12

THE

NoO ASSHOLE

RULE

Building a Civilized Workplace
and Surviving One That Isn't

@71 H
delete

ROBERT I. SUTTON, PHD

14

Interviewing

“My short-term goal is to bluff my way through
this job interview. My long-term goal is to invent
a time machine so I can come back and
change everything I’ve said so far.”

The Basics

* Show up on time.
* Look professional.

— Better than the average employee.

e Be awake.

* Plan ahead to make sure you know where you
are going and who to ask for.

-

Before the Interview

* Research the position.

— BAD: a ‘deVv’ writes code, a ‘tester’ tests it, and a ‘manager’
keeps them on track.

— Research exactly what that position means at that company.
e Study Computer Science basics
* Plan answers to ‘common questions’
* Practice!

— It’s a lot more difficult than you might think.

— Practice on paper and/or a white board. Don’t use an IDE.

* Do general practice problems.

— Use online suggestion sites (glassdoor.com) and practice
problems.

-

Computer Science ‘basics’

 Know the details about the language you will be using.

— For Java: static, implements, extends, garbage collector, classes,
methods, objects, etc.

 Know algorithms and data structures (you will be asked about
these):

— Quick sort, Merge sort, Tree traversals (BST especially for sorting)
— Depth/breadth first search.
— Arrays/Arraylists/Linked Lists/Etc.

* Insert/delete/search - efficiency of each?

— HashMaps (or other Hash object)
 Why it's useful
* Insert/delete/search - efficiency of each?

— Properties of different variable types
* Read the javadoc on Strings.

-

Technical problems to expect

* They're meant to make you think (and talk).

* Rarely will the problem be obvious/blatant:
— “Write me a program that returns the 5t
character in a string.”
* The problems are designed to have more than
one correct answer.

— “If you have an array of integers, give me back a
list of all integers which appear more than once.”

-

Answering a technical problem

* Do not obsess about finding the best answer right
away. (they don’t care)

— Start with an obvious solution, write it out, and then
iImprove on it.

e TALK!!!
— You’re code is not important.

* Plan it out first, don’t just start coding.

* Ask tons of questions, even if they may be
obvious.
— Clarify the prompt.

-

Non-technical questions

* They will ask about you:
— Experiences you’ve had.
— Lessons you’ve learned.
— Challenges you’ve overcome.
— Etc.
* Assume they have read your resume, transcript,
and application.
— Reference to it if that will help your answer.

* Come prepared with a few ‘stories’ about your
Computer Science history.

-

Now it’s your turn

* Come with questions.
e Ask for advice.

* Use this time to tell them anything extra
about you that hasn’t come up.

— |If you have a great story, find a way to segue to it.

e This is their time to sell their company to you.

-

Final Notes

* Try to stay relaxed.
— Be a nice and interesting person, beyond your code.

* One bad interview won’t end your chances.

* They want to help you, let them do so!
— Ask tons of questions.
— Ask for advice.

* |f you've gotten to the interview, you’re already
doing well!

* Look back at these slides, and find what you're
missing.

-

After the Interview

* If you don’t hear back within a week or two, send
them an email to remind them of you.

 Don’t take it personally if you don’t get an offer.

* You can ask for more time to make a decision
(within reason)
— You can also ask them to hurry up if you have another
time constraint.
* |f you don’t like the team they place you on, you
can ask for another position.

— BE POLITE!

-

