
Week 4
Monday Tuesday Wednesday Thursday Friday

• Composition
• Reading III due

• Group
meetings

• Phil
Kimmey on
using git @
rover.com

• SDS++
due

• Midterm
review –
content,
format

• Progress
report due

CSE403	
 ● Software engineering ●	
 sp12

Today

•  Orthogonality in design: when, if ever, can we use
multiple good design ideas simultaneously?

•  Ex: generic collections in Java
–  Abstraction over the details of the collection (array,

list, hashtable, etc.)
–  Separate abstraction over the values – that is, the

type of the elements
•  This kind of orthogonality is very powerful

CSE403 Sp12 2

Layering in one slide
•  Used in part for program families,

systems that have “so much in
common that it pays to study their
common aspects before looking at the
aspects that differentiate them” [Parnas
1979]
–  For example, Microsoft operating

systems, a number of the Mozilla
systems, …

•  Another kind of dependence useful for
families
–  A module A uses a module B if the

correctness of A depends on the
presence of a correct version of B

•  A non-hierarchical uses relation makes
it difficult to produce useful subsets of a
system

CSE403 Sp12 3

ipAddr := cache(hostName);
if wrong(ipAddr,hostName)
 ipAddr := lookup(hostName)
endif

•  uses and invokes dependences
often but do not always coincide

•  Invocation without use:
 name service with cached hints

•  Use without invocation: examples?

ADTs and layering interact?

Process ADT

Segment ADT

Process
Creation

Segment Mgmt.

Process Mgmt.

Segment Creation

•  Information hiding modules (say, ADTs in this case) and layers
are distinct concepts

•  How and where do they overlap in a system?
•  Are they orthogonal?

4

What kinds of secrets
(potential changes)?

What kinds of
families?

Extra credit

 Layers

 ADTs

Composition: Michael Jackson

•  Jackson observes
that we sometimes
overvalue the notion
of hierarchical
decomposition

–  The world itself does
not have strict typing
and inheritance
hierarchies

•  He argues that the
CMYK printing is a
better analogy for
software composition
at many levels

CSE403 Sp12 5

Design patterns

•  What are they?
•  Why are they?

CSE403 Sp12 6

Following slides from 331 au11
It’ll probably be a whirlwind

What is a design pattern?

¨  A standard solution to a common programming problem
¤  a design or implementation structure that achieves a

particular purpose
¤  a high-level programming idiom

¨  A technique for making code more flexible
¤  reduce coupling among program components

¨  Shorthand for describing program design
¤  a description of connections among program components

(static structure)
¤  the shape of a heap snapshot or object model (dynamic

structure)

Why design patterns?

UW CSE331 Autumn 2011

¨  Advanced programming languages like Java
provide lots of powerful constructs – subtyping,
interfaces, rich types and libraries, etc.

¨  By the nature of programming languages, they can’t
make everything easy to solve

¨  To the first order, design patterns are intended to
overcome common problems that arise in even
advanced object-oriented programming languages

¨  They increase your vocabulary and your intellectual
toolset

No programming
language is, or

ever will be,
perfect.

Extra-language
solutions (tools,
design patterns,
etc.) are needed

as well.

Perlis: “When
someone says ‘I

want a
programming
language in
which I need

only say what I
wish done,’ give
him a lollipop.”

From a colleague

UW CSE331 Autumn 2011

¨  FML. Today I got to write (in Java):

import java.util.Set;
import com.google.common.base.Function;
import com.google.common.collect.DiscreteDomains;
import com.google.common.collect.Iterables;
import com.google.common.collect.Ranges;

final int x = ...;
Set<Integer> indices =
 Ranges.closed(0, size).asSet(DiscreteDomains.integers());
Iterable<Coord> coords =
 Iterables.transform(indices, new Function<Integer,Coord>(){
 public Coord apply (Integer y) {
 return new Coord(x, y);
 }
 }
);

when I wanted to write (in Scala):

val x = ...;
val coords = 0 to size map(Coord(x, _))

Whence design patterns?

UW CSE331 Autumn 2011

¨  The Gang of Four (GoF)  – Gamma, Helm,
Johnson, Vlissides

¨  Each an aggressive and thoughtful
programmer

¨  Empiricists, not theoreticians
¨  Found they shared a number of “tricks” and

decided to codify them – a key rule was that
nothing could become a pattern unless they
could identify at least three real examples

My first experience
with patterns at

Dagstuhl  with
Helms and Vlissides

Patterns vs. patterns

UW CSE331 Autumn 2011

¨  The phrase “pattern” has been wildly overused since
the GoF patterns have been introduced

¨  “pattern” has become a synonym for “[somebody says]
X is a good way to write programs.”
¤ And “anti-pattern” has become a synonym for “[somebody

says] Y is a bad way to write programs.”
¨  A graduate student recently studied so-called “security

patterns” and found that very few of them were really
GoF-style patterns

¨  GoF-style patterns have richness, history, language-
independence, documentation and thus (most likely) far
more staying power

An example of a GoF pattern

UW CSE331 Autumn 2011

¨  Given a class C, what if you want to guarantee that
there is precisely one instance of C in your
program? And you want that instance globally
available?

¨  First, why might you want this?
¨  Second, how might you achieve this?

Possible reasons for Singleton

UW CSE331 Autumn 2011

¨  One RandomNumber generator
¨  One Restaurant, one ShoppingCart
¨  One KeyboardReader, etc…
¨  Make it easier to ensure some key invariants
¨  Make it easier to control when that single instance is

created – can be important for large objects
¨  …

Several solutions

UW CSE331 Autumn 2011

public class Singleton {
 private static final Singleton instance
 = new Singleton(); // Private constructor prevents
 // instantiation from other classes
 private Singleton() { }
 public static Singleton getInstance() {
 return instance;
 }
}

public class Singleton {
 private static Singleton _instance;
 private Singleton() { }
 public static synchronized Singleton getInstance() {
 if (null == _instance) {
 _instance = new Singleton();
 } return _instance;
 }
}

Eager allocation
of instance

Lazy allocation
of instance

And there are more (in EJ, for instance)

Abstract Factory Pattern

•  wikipedia
•  stackoverflow
•  …and who knows where?!

CSE403 Sp12 15

Points to make

•  Lots of different kinds of dependences
•  Composition of different design/abstraction

mechanisms can be extraordinarily powerful
–  So increasing your understanding of powerful

mechanisms and patterns will surely help simplify
your design over time

–  This in turn may well increase some form of
conceptual integrity

CSE403 Sp12 16

CSE403	
 ● Software engineering ●	
 sp12

Week 3-4
Monday Tuesday Wednesday Thursday Friday

• Composition
• Reading III due

• Group
meetings

• Phil
Kimmey on
using git @
rover.com

• SDS++
due

• Midterm
review –
content,
format

• Progress
report due

