CSE403 e Software engineering e sp12

Friday

« Composition
*Reading Ill due

» Group
meetings

* Phil
Kimmey on

using git @
rover.com

* Midterm
review —
content,
format

* Progress
report due

Today

« Orthogonality in design: when, if ever, can we use
multiple good design ideas simultaneously?

* EX: generic collections in Java

— Abstraction over the details of the collection (array,
list, hashtable, etc.)

— Separate abstraction over the values — that is, the
type of the elements

« This kind of orthogonality is very powerful

CSE403 Spl2 2

Layering in one slide

OSI Model
Data Layer
Applicati
Data vabpyication)
Application

Used in part for program families,
systems that have “so much in
common that it pays to study their
common aspects before looking at the
aspects that differentiate them” [Parnas
1979]

— For example, Microsoft operating
systems, a number of the Mozilla
systems, ...

Another kind of dependence useful for
families
— A module A uses a module B if the

correctness of A depends on the
presence of a correct version of B

A non-hierarchical uses relation makes
it difficult to produce useful subsets of a
system

CSE403 Sp12

Presentation j

Data Representation

Data

Host Layers

and Encryption
Session
Interhost Communication

Segments

Transport

End-to-End Connections

and Reliability
Network

Path Determination
and IP (Logical Addressing)

Packets

Data Link
MAC and LLC
(Phyiscal addressing)

Frames

O
o
T
o

Media Layers

s
-

* uses and invokes dependences
often but do not always coincide

* |[nvocation without use:
name service with cached hints

« Use without invocation: examples?

ipAddr := cache (hostName) ;
if wrong (ipAddr,hostName)

ipAddr := lookup (hostName)
endif

ADTs and layering interact?

« Information hiding modules (say, ADTs in this case) and layers
are distinct concepts

 How and where do they overlap in a system?

* Are they orthogonal?

Layers

ADTs

Segment Mgmt.

Process Mgmt.

Scgment Creation

Process
Creation

Composition: Michael Jackson

« Jackson observes
that we sometimes
overvalue the notion
of hierarchical
decomposition

— The world itself does
not have strict typing
and inheritance
hierarchies

 He argues that the
CMYK printing is a
better analogy for
software composition
at many levels

CSE403 Sp12

Shanley and Many Descriptions

Editing Requirement:

T +—0 Operation O requested
ontextT

on text T by user U

T »7 o) Revision History Requirement
U | \ Operation O requested

(0] GUI Requirements
\ Operation O requested
B by clicking button B

* One description 1s not enough

Design patterns

« What are they?
 Why are they?

Following slides from 331 au11

It’ll probably be a whirlwind

CSE403 Sp12

What is a design pattern@

A standard solution to a common programming problem

a design or implementation structure that achieves a
particular purpose

a high-level programming idiom
A technique for making code more flexible

reduce coupling among program components

Shorthand for describing program design

a description of connections among program components
(static structure)

the shape of a heap snapshot or object model (dynamic
structure)

Why design patterns?

Advanced programming languages like Java
provide lots of powerful constructs — subtyping,
interfaces, rich types and libraries, etc.

By the nature of programming languages, they can’t
make everything easy to solve

To the first order, design patterns are intended to
overcome common problems that arise in even
advanced object-oriented programming languages

They increase your vocabulary and your intellectual
toolset

UW CSE331 Autumn 2011

No programming
language is, or

From a colleague B

perfect.
FML. Today | got to write (in Java): Extra-language
import java.util.Set; solutions (tools,
import com.google.common.base.Function; .
import com.google.common.collect.DiscreteDomains; design patterns,

import com.google.common.collect.Iterables;

import com.google.common.collect.Ranges; eic°) are needed

final int x = ...; as well.
Set<Integer> 1ndlces =
Ranges.closed (0, size) .asSet(DiscreteDomains.integers()) .
Iterable<Coord> coords = Perlis: “When
Iterables.transform(indices, new Function<Integer,Coord>() { (|
public Coord apply (Integer y) { someone says
return new Coord(x, y); want a
}
) R programming
language in
when | wanted to write (in Scala): which I need
val x = ... only say what |

val coords = 0 to size map(Coord(x, _)) . g 0
wish done,’ give

him a lollipop.”
UW CSE331 Autumn 2011

The Gang of Four (GoF)
Johnson, Vlissides

My first experience
with patterns at
Dagstuhl with

prog rammer Helms and Vlissides

Each an aggressive and thoughtful

Empiricists, not theoreticians

Found they shared a number of *“tricks” and
decided to codify them — a key rule was that
nothing could become a pattern unless they
could identify at least three real examples

UW CSE331 Autumn 2011

Pc:’r’rerns vVS. patterns

The phrase “pattern” has been wildly overused since
the GoF patterns have been introduced

“pattern” has become a synonym for “[somebody says]
X is a good way to write programs.”

And “anti-pattern” has become a synonym for “[somebody
says] Y is a bad way to write programs.”

A graduate student recently studied so-called “security
patterns” and found that very few of them were really
GoF-style patterns

GoF-style patterns have richness, history, language-
independence, documentation and thus (most likely) far
more staying power

UW CSE331 Autumn 2011

An example of a GoF pattern

Given a class C, what if you want to guarantee that
there is precisely one instance of C in your
program?¢ And you want that instance globally
available?

First, why might you want this?

Second, how might you achieve this?

UW CSE331 Autumn 2011

Possible reasons for Singleton

One RandomNumber generator

One Restaurant, one ShoppingCart
One KeyboardReader, eic...

Make it easier to ensure some key invariants

Make it easier to control when that single instance is
created — can be important for large objects

UW CSE331 Autumn 2011

Several solutions

public class Singleton {
private static final Singleton instance

= new Singleton(); // Private constructor prevents
// instantiation from other classes
private Singleton() { }
public stal.t:Lc Singleton getInstance () { Trren o
return i1nstance; .
} of instance

}

public class Singleton {
private static Singleton instance;

private Singleton() { }
public static synchronized Singleton getInstance() {
if (null == instance) {
instance = new Singleton(); :
} return instance; Lazy allocation
} B of instance

}

And there are more (in EJ, for instance) UW CSE331 Autumn 2011

Abstract Factory Pattern

« wikipedia
« stackoverflow
e ...and who knows where?!

CSE403 Sp12

15

Points to make

» Lots of different kinds of dependences

« Composition of different design/abstraction
mechanisms can be extraordinarily powerful

— So increasing your understanding of powerful
mechanisms and patterns will surely help simplify
your design over time

— This in turn may well increase some form of
conceptual integrity

CSE403 Spl2 16

CSE403 e Software engineering e sp12
L Week34

Monday Tuesday Wednesday | Thursday Friday
« Composition » Group * Phil *SDS++ * Midterm
* Reading Il due meetings Kimmey on due review —
using git @ content,
rover.com format
* Progress
report due

