
Week 3-4
Monday Tuesday Wednesday Thursday Friday

• Design
• Reading II due

• Group
meetings

• SRS due

• Design • UML • Design
• Progress
report due

• Lecture TBA
• Reading III due

• Group
meetings

• Phil
Kimmey on
using git @
rover.com

• SDS++
due

• Midterm
review –
content,
format

• Progress
report due

CSE403	
 ● Software engineering ●	
 sp12

Today

•  Cohesion and coupling – why software entities are
organized together and how they interact

•  Conceptual integrity – Brooks and others

CSE403 Sp12 2

Cohesion

•  Cohesion is the reason that elements are grouped
together in a module

•  An alternative view is that cohesion is the degree to
which elements in a module are related to each other

•  In general, “better” cohesion has a better reason to
combine entities together and makes it easier to
–  understand modules,
–  maintain the software, and
–  reuse modules.

CSE403 Sp12 3

Name Description

<assert.h> Contains the assert macro, used to assist with detecting logical errors …

<ctype.h> Defines set of functions used to classify characters by their types or to …

<errno.h> For testing error codes reported by library functions.

<locale.h> Defines localization functions.

<math.h> Defines common mathematical functions.

<signal.h> Defines signal handling functions.

<stdalign.h> For querying and specifying the alignment of objects.

<stdarg.h> For accessing a varying number of arguments passed to functions.

<stdatomic.h> For atomic operations on data shared between threads.

<stdbool.h> Defines a boolean data type.

<stddef.h> Defines several useful types and macros.

<stdio.h> Defines core input and output functions

<stdlib.h>
Defines numeric conversion functions,
pseudo-random numbers generation functions, memory allocation,
process control functions

<string.h> Defines string handling functions.

<threads.h> Defines functions for managing multiple Threads as well as mutexes and …

<time.h> Defines date and time handling functions

stdlib.c
Some removed

Java 7 JDK

CSE403 Sp12 5

On what basis/bases were the stdlib.c and JDK
cohesion decisions made?

Extra credit

(Some) Kinds of cohesion

•  Coincidental cohesion: grouped despite lack of
relationship – e.g., “Utilities”

•  Temporal cohesion: grouped together because of
when they are processed – e.g., initialization code

•  Communicational cohesion: grouped together
because they use the same data (whether
encapsulated or not)

•  Functional cohesion: grouped because they share
data and contribute to a well-defined task

CSE403 Sp12 6

Metrics

•  Categorization is not precise nor even totally ordered
•  There are a number of attempts to quantify cohesion
•  An example of an oft-cited one is LCOM (Lack of Cohesion Of

Methods) based on how many reasons a class has to change
–  LCOM	
 =	
 1	
 –	
 (sum(mf)/M*F)

M ≡ #methods in the class
F ≡ #instance fields in the class
mf ≡ #methods of the class accessing field f	

–  All methods in a highly cohesive class use all the instance
fields in the class – that is, sum(mf)	
 =	
 M*F	

•  The objective of defining quantitative metrics for cohesion has,
to me, been largely unsuccessful because (a) the connection of
the metrics to our conceptual understanding is often weak and
(b) the metrics rarely provide any “actionable” information

CSE403 Sp12 7

Coupling

•  Given a set of modules, coupling characterizes how
their entities interact across module boundaries

•  An alternative view is that coupling is the degree to
which each module relies on the other modules

•  In general, “better” (more “loosely”) coupling
–  reduces the ripple effect, where making a change

in one module forces changes in other modules
–  simplifies building, testing and reuse

•  It is usually the case that better cohesion and better
coupling go hand-in-hand

CSE403 Sp12 8

CSE403 Sp12 9

(Some) Kinds of coupling

•  Content/pathological coupling is when modules are so
interconnected that they should essentially be a single
module

•  Common coupling is when modules share the same global
data

•  Control coupling is when a module controls the flow of
another module, for example by passing a parameter that
drives the called module

•  Data coupling is when modules share data through
parameters

•  Message coupling is where all interactions are through
parameters and message passing

•  No coupling is where modules do not communicate at all
with one another

CSE403 Sp12 10

•  There are a large number of kinds of dependences
–  Control dependence – which module M1 invokes which M2?
–  Name dependence – which M1 knows the name of which M2?
–  Data-flow dependence – which data D1 is needed to compute which data

D2?
–  Source file dependence – which file F1 must be compiled before which F2?
–  Global data dependence – which D1 is referenced by which M2?
–  …

•  Of course, the devil is in the details – for example, control
dependence
–  static (methods in M1 can invoke methods in M2) or dynamic

(which methods in M1 do invoke methods in M2 and over what
test suite)?

–  infrequency (if only one method in M1 can invoke a method in
M2 at most once) or frequency (methods in M1 invoke most of
the methods in M2 a lot of times) … and is that static or dynamic

Essentially: what dependences?

CSE403 Sp12 11

So many dependences

•  Every arrow in every
UML diagram is a
dependence

•  Many dependences are
implicit in the code and
design – they can be
determined by human
inspection or, more
commonly, automated
analysis

•  Which dependences
matter the most?

CSE403 Sp12 12

Metrics

•  Like cohesion, the earlier categorization is not precise nor even
totally ordered

•  There are a large number of attempts to quantify cohesion
•  Here’s one very simple one

C	
 =	
 	
 1	
 /	
 (number	
 of	
 input	
 parameters	
 +	

	
 	
 	
 	
 	
 	
 number	
 of	
 output	
 parameters	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 	
 number	
 of	
 global	
 variables	
 used	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 	
 number	
 of	
 modules	
 called	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 	
 number	
 of	
 modules	
 calling)	

•  The objective of defining quantitative metrics for coupling has, in
some sense, been worse than for cohesion because there are
so many kinds of dependences, the metrics are often imprecise
about dependences, and the tools to extract dependences have
a set of complications as well

CSE403 Sp12 13

Tool complications: theoretical

•  Example: Call graph (control dependence)
–  Undecidable if it must include only pairs <a,b>

where a calls b in some possible execution of a
program

–  Conservative if it never excludes a pair <a,b> if a
could call b in some possible execution

–  Useless (although conservative and fast to
compute) if it includes all pairs <a,b>

–  Dynamic if it only includes a pair <a,b> if a calls b
in some actual execution

CSE403 Sp12 14

Tool complications: practical

•  Reflection (like in Java)
•  Events
•  Hidden interactions (such as through the file system)
•  C/C++

–  What defines a project? A directory, a make file,
etc.?

–  Before the preprocessor is run, or after? If before,
over all possible definitions?

CSE403 Sp12 15

Perfect coupling and cohesion

CSE403 Sp12 16

But fails on
complexity

Conceptual integrity

•  Fred Brooks 1975: Conceptual integrity is the most
important consideration in system design. It is better
to have a system omit certain anomalous features
and improvements, but to reflect one set of design
ideas, than to have one that contains many good but
independent and uncoordinated ideas.

•  Brooks 1995: I am more convinced than
ever. Conceptual integrity is central to product quality.
Having a system architect is the most important
single step toward conceptual integrity.

CSE403 Sp12 17

Conceptual integrity

•  McConnell: “Good software
architecture makes the rest of the
project easy.”

•  Hoare 1985: ““There are two ways of
constructing a software design:
–  one way is to make it so simple

that there are obviously no
deficiencies;

–  the other is to make it so
complicated that there are no
obvious deficiencies.”

•  Rechtin/Maier: “In architecting a new
program, all the serious mistakes are
made in the first day”

CSE403 Sp12 18

CSE403	
 ● Software engineering ●	
 sp12

Week 3-4
Monday Tuesday Wednesday Thursday Friday

• Design
• Reading II due

• Group
meetings

• SRS due

• Design • UML • Design
• Progress
report due

• Lecture TBA
• Reading III due

• Group
meetings

• Phil
Kimmey on
using git @
rover.com

• SDS++
due

• Midterm
review –
content,
format

• Progress
report due

