
Week 3
Monday Tuesday Wednesday Thursday Friday

• Design
• Reading II due

• Group
meetings

• SRS due

• Design • UML • Design
• Progress
report due

CSE403	
 ● Software engineering ●	
 sp12

Today’s pre-apology:
a couple of far too busy slides

(De)composition

•  Functional decomposition vs. information hiding
•  Architectural composition – pipes & filters, layers, etc.
•  Object-oriented – aggregation, inheritance, etc.

CSE403 Sp12 2

KWIC
The KWIC index system accepts
an ordered set of lines; …Any line
may be “circularly shifted” by
repeatedly removing the first word
and appending it at the end of the
line. The KWIC index system
outputs a list of all circular shifts of
all lines in alphabetical order.

CSE403 Sp12 3

a	
 comic	
 notkin	
 is	
 not	

are	
 really	
 silly	
 mozart	
 jokes	

are	
 silly	
 jokes	

comic	
 notkin	
 is	
 not	
 a	

is	
 not	
 a	
 comic	
 notkin	

jokes	
 are	
 really	
 silly	
 mozart	

jokes	
 are	
 silly	

mozart	
 jokes	
 are	
 really	
 silly	

not	
 a	
 comic	
 notkin	
 is	

notkin	
 is	
 not	
 a	
 comic	

really	
 silly	
 mozart	
 jokes	
 are	

silly	
 jokes	
 are	

silly	
 mozart	
 jokes	
 are	
 really	

	
 	
 	
 	
 	
 	
 	
 Notkin	
 is	
 not	
 a	
 comic!	

	
 	
 	
 	
 	
 	
 	
 	
 Mozart	
 jokes	
 are	
 really	
 silly.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Jokes	
 are	
 silly!	
 	

	
 	
 	
 	
 	
 Notkin	
 is	
 not	
 a	
 comic!	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Notkin	
 is	
 not	
 a	
 comic!	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Mozart	
 jokes	
 are	
 really	
 silly.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Jokes	
 are	
 silly!	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Mozart	
 jokes	
 are	
 …	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Notkin	
 is	
 not	
 a	
 comic!	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Notkin	
 is	
 not	
 a	
 comic!	

	
 	
 	
 	
 Mozart	
 jokes	
 are	
 really	
 silly.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Jokes	
 are	
 silly!	
 	

	
 	
 …	
 jokes	
 are	
 really	
 silly!	

	

Jokes	
 are	
 silly!	

Mozart	
 jokes	
 are	
 really	
 silly.	

Notkin	
 is	
 not	
 a	
 comic.	

KWIC script: (de)composition

CSE403 Sp12 4

awk '{print $0
for (i = length($0); i > 0; i--)
 if (substr($0,i,1) == " ")
 print substr($0,i+1) "\t" substr($0,1,i-1)
}' $1 | sort -f | awk '
BEGIN {FS = "\t"; WID = 30}
{printf("%" WID "s %s\n",

 substr($2,length($2)-WID+1),substr($1,1,WID))
}'

Generate k copies of each line of k words. Split
each copy at a different word to produce all
rotations of the line; mark the split word with a tab
Split each line at the tab, order the two pieces,
truncate each piece to ≤30 characters, and output

input
generate shifts
sort
output

composition: Unix pipe

Note: may not produce identical output to previous slide

What can change easily? What can’t?

Parnas: functional decomposition

Partial list of possible changes
•  Representation of lines, words, characters; storing on disk vs. in-

memory – basically obsolete
•  Incremental vs. monolithic sorting algorithms

–  [shift;	
 sort] vs. [for	
 each	
 shift	
 insert	
 into	
 sorted	
 list]	

•  Eliminating noise words

Partially
obsolete
design

Functional decomposition

•  Top-down design – breaking
each high-level function into
more manageable parts

•  Well-suited to program
correctness, defining and
proving pre- and post-conditions

•  What does this diagram actually
show?

CSE403 Sp12 6

Main

Input Shift Sort Output

•  What would have to change?
–  Incremental vs. monolithic

sorting algorithms
–  Eliminating noise words
–  Interactive UI
–  …

Connecting design and change

•  The functional decomposition is based on breaking the
computation down into more manageable parts

•  But the questions are about, “What will likely change?”
•  There is no a priori reason that a design based on

functional decomposition will be suitable to support likely
kinds of change

•  What if we decomposed with anticipated change in mind?

This is the core notion of Parnas’ information hiding –
connecting design with anticipated change

CSE403 Sp12 7

Information hiding

•  Decide on likely changes
–  [Truth in advertising: this is hard and perhaps not doable well]

•  Design interfaces that protect clients from those
changes – the interfaces define a contract that the
clients can rely on

•  Implement the interface based on a best decision
•  If the decision later changes, re-implement the

interface but continue to satisfy the contract

CSE403 Sp12 8

KWIC: information hiding

CSE403 Sp12 9

Partially
obsolete
design

Incremental vs. monolithic
sorting? Eliminating noise
words? Interactive UI? …?

Other examples of information hiding

•  A software system based on a
physical sensor – maybe an
accelerometer on a mobile
phone

–  Design to more easily
accommodate improvements in
the accuracy of the sensor in
later versions of the phone?

•  Tax software (TurboTax,
TaxCut, etc.)

–  Ever notice how Congress
changes tax laws every year?

–  These companies can’t be late
to market with their products

–  Allowing tax rates to change
may be easy, but what about
eligibility, etc.?

CSE403 Sp12 10

Tax Credit of up to $8,000 for First-Time Homebuyers …

…Existing homebuyers are eligible to receive a tax credit of 10% of
the purchase price up to $6,500 if they bought and closed on a
replacement home by September 30, 2010. In order to be eligible for
the credit, homeowners must have lived in the same principal
residence for any five-consecutive-year period during the past eight
years. They are not required to sell or dispose of their current home,
but the new home must become their principal residence.
If you purchased and closed on a primary residence before September
30, 2010, and are a “first-time” homebuyer, you can qualify for a tax
credit of 10% of the purchase price up to $8,000. To be eligible, you
must not have owned a residence in the United States in the previous
three years.
To qualify for either credit, you must have signed a binding contract to
buy the house by April 30, 2010, and closed on it by September 30,
2010.
Members of the armed forces who were on official extended duty
outside of the United States for at least 90 days between Jan .1, 2009,
and May 1, 2010, may qualify for a one-year extension.
The credit is refundable to the extent it exceeds your regular tax
liability, which means that if it more than offsets your tax liability, you’ll
get a refund check. But it does not offset the Alternative Minimum Tax.
In addition, income limits were expanded from earlier versions of the
credit. Homebuyers who file as single or head-of-household taxpayers
can claim the full credit if their modified adjusted gross income (MAGI)
is less than $125,000. For married couples filing a joint return, the
combined income limit is $225,000.
Single or head-of-household taxpayers who earn between $125,000
and $145,000, and married couples who earn between $225,000 and
$245,000 are eligible to receive a partial credit. The credit is not
available for single taxpayers whose MAGI is greater than $145,000
and married couples with a MAGI over $245,000. Also, homes costing
more than $800,000 are not eligible for the credit.

Some “last” things on information hiding

•  Encapsulation – defining an interface that may keep some
elements of the corresponding implementation private – is not
always information hiding
–  Encapsulation by itself does not focus on change as a

design principle – separates public from private components
•  Abstract data types are a form of information hiding that focuses

on hiding concrete data representations – that might change –
and the implementation of the operations defined on the
abstractions

•  What defines the “contract” by an information hiding interface?
The documentation? Performance – promised or inferred? Is the
client always right?
–  These are really complicated questions!… that led in part

to the aspect-oriented design and programming paradigm

CSE403 Sp12 11

Software architecture

Mary Shaw and David Garlan … have
been named co-recipients of the
Outstanding Research Award for 2011
presented by the Association for
Computing Machinery's Special Interest
Group on Software Engineering
(SIGSOFT).

Shaw, the Alan J. Perlis Professor…, and
Garlan, professor of computer science …
in the [Carnegie Mellon]
School of Computer Science, were
recognized by SIGSOFT for their
“significant and lasting software
engineering research contributions
through the development and promotion
of software architecture.”

CSE403 Sp12 12

A.  Capturing, cataloguing, and
exploiting experience in
software designs

B.  Allowing reasoning on classes
of designs

•  By adopting software
architectures with known
properties, one can increase
confidence in the properties of
your software system
•  [Think about Feynman’s

observations]

Architecture: two parts

•  Components define the basic computations
comprising a software system
–  Abstract data types, filters, etc.

•  Connectors define the interconnections between
components
–  Procedure call, event announcement, etc.

13

Architectural style

•  Defines the vocabulary of components and
connectors for a family (style) of software systems

•  Constraints on the components and connectors and
on their combination
–  Topological constraints (no cycles, register/

announce relationships, etc.)
–  Execution constraints (timing, etc.)

•  By choosing a style, one gets all the known
properties of that style

14

Filter
Pipe

Classic style example: pipes & filters

a)  Pipes must compute local transformations
b)  Filters must not share state with other filters
c)  There must be no cycles

•  If these constraints are satisfied, it is a pipe & filter system, and some

properties are ensured – for example, lack of deadlock
•  But if they are not satisfied (even a “little” bit) no guarantees are

provided
•  One can think of the constraints as obligations (pre-conditions of a sort)

on the designer

CSE403 Sp12 15

shift sort print

Pipe & filter?

16

•  Processing steps are
independent

•  Each runs to completion
before moving to next
step

•  Data transmitted as a
whole between steps

a)  Pipes must compute
local transformations

b)  Filters must not share
state with other filters

c)  There must be no
cycles

Other common styles
•  Layered systems
•  Blackboard

systems
•  …many others

18

Key: by constraining
your designs you can
increase your
confidence in the
software’s properties

More to design? Of course

CSE403 Sp12 19

•  Pipe & filter from
earlier slide

•  Now with more
design information

•  Classes, interfaces,
methods, …

Object-oriented design notations

CSE403 Sp12 20

•  “Modeling” languages
•  UML is by far the most used

(and misused), with 14
different kinds of diagrams

•  Very wide-spectrum use (and
misuse)

•  Two most important diagrams
are class diagrams (structure,
attributes, and relationships)
and sequence diagrams (how
objects communicate via a
sequence of messages)

UML class diagrams

association (one- and two-way), aggregation,
inheritance, multiplicity, interfaces, abstract, visibility, …

CSE403 Sp12 21

More in section tomorrow (Anton)

•  Class and sequence diagrams
•  Violet (free drawing package for UML)

•  Use UML to the degree it is a help for your team –

if it’s getting in the way, think hard about what
aspects you want to use

CSE403 Sp12 22

Week 3
Monday Tuesday Wednesday Thursday Friday

• Design
• Reading II due

• Group
meetings

• SRS due

• Design • UML • Design
• Progress
report due

CSE403	
 ● Software engineering ●	
 sp12

