
Week 3
Monday Tuesday Wednesday Thursday Friday

• Design
• Reading II due

• Group
meetings

• SRS due

• Design • UML • Design
• Progress
report due

CSE403	 ● Software engineering ●	 sp12

Design is not just what it looks like and feels
like. Design is how it works. –Steve Jobs

Apologies in advance: some slides with too
much text (read off-line) and a really bad joke

What does this 1-line shell script do?

tr -cs A-Za-z '\n' | tr A-Z a-z | sort }
 uniq -c | sort -rn | sed ${1}q

CSE403 Sp12 2

1 tr -cs A-Za-z '\n' |
2 tr A-Z a-z |
3 sort |
4 uniq -c |
5 sort -rn |
6 sed ${1}q

1.  Make one-word lines by transliterating the
complement (-c) of the alphabet into newlines
(note the quoted newline), and squeezing out
(-s) multiple newlines.

2.  Transliterate upper case to lower case.
3.  Sort to bring identical words together.
4.  Replace each run of duplicate words with a

single representative and include a count (-c).
5.  Sort in reverse (-r) numeric (-n) order.
6.  Pass through a stream editor; quit (q) after

printing the number of lines designated by the
script’s first parameter (${1}).

Jon Bentley, Don Knuth, and Doug McIlroy.
1986. Programming pearls: a literate
program.Commun. ACM 29, 6 (June 1986),
471-483. DOI=10.1145/5948.315654

3

Given a text file and an
integer k, print the k most
common words in the file
(and the number of their
occurrences) in decreasing
frequency.

Knuth’s version: literate programming

8th page

McIroy’s exposition

•  A wise engineering solution would produce—or better, exploit—
reusable parts.

•  Very few people can obtain the virtuoso services of Knuth …but old
UNIX hands know instinctively how to solve this one in a jiffy.

•  … Everything there—even input conversion and sorting—is
programmed monolithically and from scratch. In particular the isolation
of words, the handling of punctuation, and the treatment of case
distinctions are built in. Even if data-filtering programs for these exact
purposes were not at hand, these operations would well be
implemented separately: for separation of concerns, for easier
development, for piecewise debugging, and for potential reuse.

•  The simple pipeline given above will suffice to get answers right now,
not next week or next month. It could well be enough to finish the job.
But even for a production project, say for the Library of Congress, it
would make a handsome down payment, useful for testing the value of
the answers and for smoking out follow-on questions.

CSE403 Sp12 5

Engineering: “Design
under Constraints”

Reuse

Reuse++

Resources

Process

Challenger Disaster: Feynman

The usual way that such engines are designed … may be called
the component system, or bottom-up design. First it is necessary to
thoroughly understand the properties and limitations of the
materials to be used (for turbine blades, for example), and tests are
begun in experimental rigs to determine those. With this knowledge
larger component parts … are designed and tested individually. As
deficiencies and design errors are noted they are corrected and
verified with further testing. … Finally one works up to the final
design of the entire engine, to the necessary specifications. There
is a good chance, by this time that the engine will generally
succeed, or that any failures are easily isolated and analyzed
because the failure modes, limitations of materials, etc., are so well
understood. …

CSE403 Sp12 6

Roughly, build bottom-up with
components with known properties

The Space Shuttle Main Engine was handled in a different manner,
top down, we might say. The engine was designed and put together
all at once with relatively little detailed preliminary study of the material
and components. Then when troubles are found in the bearings,
turbine blades, coolant pipes, etc., it is more expensive and difficult to
discover the causes and make changes. For example, cracks have
been found in the turbine blades of the high pressure oxygen
turbopump. Are they caused by flaws in the material, the effect of the
oxygen atmosphere on the properties of the material, the thermal
stresses of startup or shutdown, … or mainly at some resonance at
certain speeds, etc.? … Using the completed engine as a test bed to
resolve such questions is extremely expensive. One does not wish to
lose an entire engine in order to find out where and how failure occurs.
Yet, an accurate knowledge of this information is essential to acquire
a confidence in the engine reliability in use. …
A further disadvantage of the top-down method is that, if an
understanding of a fault is obtained, a simple fix, such as a new shape
for the turbine housing, may be impossible to implement without a
redesign of the entire engine.

The point?

•  Software design – like all engineering design – has a set
of dimensions and criteria to consider
–  Correctness, cost, performance, robustness, usability,

understandability, modifiability, …
–  Some of these properties come directly from parts of

the software system
–  Others are more properties of the overall system,

sometimes called emergent properties
•  These are constraints that, in part, distinguish software

engineering from the theoretical foundations of
computation – that work is critical, and software
engineering augments it with constraints

•  Underlying all effective software design – indeed,
computational thinking – is the notion of abstraction

CSE403 Sp12 8

Continuous & iterative

•  High-level (“architectural”) design
–  What pieces?
–  How connected?

•  Low-level design
–  Should I use a hash table or binary search tree?

•  Very low-level design
–  Variable naming, which language constructs, etc.
–  Boolean Zen
–  About 1000 design decisions at various levels are

made in producing a single page of code

CSE403 Sp12 9

Con
t
inuous
•i
tera
t
ive

A few key criteria for software design

•  Accommodating change – taking advantage of software’s “soft”-
ness
–  Agile Manifesto; “Software that does not change becomes

useless over time” [Belady & Lehman]; …
•  Generality vs. performance

–  In math, a more general theorem is always better than a less
general one

–  In software, a less general solution may consume enough
fewer resources to dominate a more general solution – but
don’t forget #1

•  Complexity – physical properties constrain physical design, but
fewer constraints are imposed by software as a material

CSE403 Sp12 10

Abstraction
Kramer, CACM 2007
•  “…[remove] detail to simplify and focus attention based on the

definitions:
–  The act of withdrawing or removing something, and;
–  The act or process of leaving out of consideration one or

more properties of a complex object so as to attend to
others.

•  “…the process of generalization to identify the common core or
essence based on the definitions:
–  The process of formulating general concepts by abstracting

common properties of instances, and;
–  A general concept formed by extracting common features

from specific examples.”

CSE403 Sp12 11

Computational thinking
Wing, CACM 2006

•  “Computational thinking is using abstraction and decomposition
when attacking a large complex task or designing a large
complex system. It is separation of concerns. It is choosing an
appropriate representation for a problem or modeling the
relevant aspects of a problem to make it tractable. It is using
invariants to describe a system's behavior succinctly and
declaratively. It is having the confidence we can safely use,
modify, and influence a large complex system without
understanding its every detail. It is modularizing something in
anticipation of multiple users or prefetching and caching in
anticipation of future use.

•  “Thinking like a computer scientist means more than being able
to program a computer. It requires thinking at multiple levels of
abstraction…”

CSE403 Sp12 12

Mechanisms for abstraction?

•  Methods
•  Classes

CSE403 Sp12 13

In small groups list other
software abstraction mechanisms

Decomposition and composition

•  The technique of mastering complexity has been
known since ancient times: Divide et impera

 —Dijkstra, 1965
–  …strategy of gaining and maintaining power by

breaking up larger concentrations of power into chunks
that individually have less power than the one
implementing the strategy. —Wikipedia, today

•  Divide and conquer. Separate your concerns.
Yes. But sometimes the conquered tribes must
be reunited under the conquering ruler, and the
separated concerns must be combined to serve
a single purpose.” —M. Jackson, 1995

CSE403 Sp12 14

Benefits of decomposition

•  Decrease size of tasks
•  Support independent testing and analysis
•  Separate work assignments
•  Ease understanding

•  In principle, can significantly reduce paths to consider

by introducing an interface
–  Consider the Knuth and McIlory examples
–  Many more…

CSE403 Sp12 15

CSE403 Sp12 16

Alan Perlis quotations: abstraction

•  If you have a procedure with 10 parameters, you
probably missed some.

•  One man's constant is another man's variable.
•  Simplicity does not precede complexity, but follows it.

–  Our designs are so complex there is no hope of
getting them right first time by pure thought. To
expect to is arrogant. —Brooks

CSE403 Sp12 17

Anticipating change & design

•  It is generally believed that to accommodate change
one must anticipate possible changes
–  Counterpoint: Extreme Programming

•  By anticipating (and perhaps prioritizing) changes,
one defines additional criteria for guiding the design
activity – what abstractions one should choose

•  It is not possible to anticipate all changes

Anticipating vs. not anticipating: comments?

Extra credit

KWIC: “hello world” of module design

The KWIC index system accepts an ordered set of lines; each line
is an ordered set of words, and each word is an ordered set of
characters. Any line may be “circularly shifted” by repeatedly
removing the first word and appending it at the end of the line. The
KWIC index system outputs a list of all circular shifts of all lines in
alphabetical order.

CSE403 Sp12 18

Another script…

•  Why not always the best?
•  What might change?
•  More in lecture and in Reading III

CSE403 Sp12 19

awk '{print $0
for (i = length($0); i > 0; i--)
 if (substr($0,i,1) == " ")
 print substr($0,i+1) "\t" substr($0,1,i-1)
}' $1 | sort -f | awk '
BEGIN {FS = "\t"; WID = 30}
{printf("%" WID "s %s\n",

 substr($2,length($2)-WID+1),substr($1,1,WID))
}'

Week 3
Monday Tuesday Wednesday Thursday Friday

• Design
• Reading II due

• Group
meetings

• SRS due

• Design • UML • Design
• Progress
report due

CSE403	 ● Software engineering ●	 sp12

