CSE403 e Software engineering e sp12

Tuesday Wednesday | Thursday Friday

* Group * Design « UML * Design
meetings * Progress
*SRS due report due

Design is not just what it looks like and feels
like. Design is how it works. —Steve Jobs

Apologies in advance: some slides with too
much text (read off-line) and a really bad joke

What does this 1-line shell script do?

tr -cs A-Za-z '\n'
uniq -c

| tr A-Z a-z | sort }
| sort -rn | sed ${1l}qg

o U o w N

tr -cs A-Za-z '\n' |
tr A-Z a-z |

sort |

uniq -c |

sort -rn |

sed ${l}lq

Jon Bentley, Don Knuth, and Doug Mcliroy.
1986. Programming pearls: a literate
program.Commun. ACM 29, 6 (June 1986),
471-483. DOI=10.1145/5948.315654

CSE403 Sp12

1.

Make one-word lines by transliterating the
complement (-c) of the alphabet into newlines
(note the quoted newline), and squeezing out
(-s) multiple newlines.

Transliterate upper case to lower case.
Sort to bring identical words together.

Replace each run of duplicate words with a
single representative and include a count (-c).

Sort in reverse (-r) numeric (-n) order.

Pass through a stream editor; quit (q) after
printing the number of lines designated by the
script’s first parameter (${1}).

by for Bentley
with Special Guest Oysters
Don Knuth and Doug Mclliroy

programming
pearls

A LITERATE PROGRAM

Last montl’s column introdiwced Don Knuth's style of
“Literate Programming” and his WEB system for building
programs thet are soorks of literature. This colwmn pre-
semts a literate program by Knuth (its onigins are sketched
in last momth’s column) and, 25 hefits literature, @ review
So without further ado, here is Knuth's program,
retypeset i Communications style. —Jon Bentley

Common Words Section
Introduction.]
Strategic considerations 8
Basicinputrouninesiciiena... Y
Dictionary lookupooooiiiiiiiniai... 17
The frequency COUNts .. .o.veiiiinennanninas.d2
Sorting a trie R |
The endgame a
Index A2

1. Introduction. The purpose of this program s 1o
solve the following problem posed by lon Bentley:

Glven a text file and an integer &, print the k most
common words in the flle (and the number of
their occurrences) in decreasing frequency.

Jon intentionally left the problem somewhat
vague, but he stated that “a user should be able to
find the 100 most frequent words in a twenty-page
technical paper (roughly a 50K byte file) without
undue emotional trauma.”

Given a text file and an

frequency, or there
words. Let's be mon
words are 1o be prin
quency. with words
phabetic arder. Prin
have been output, if

2. The input file is a
text. If it begins witl
(preceded by oprion
the value of &; other
k= 100, Answrras w

define

frequency.

~ 100 Juse this value LT K 50t
‘wecilied)

A given pruldesn, this puowgiam is
4 example of the NEB system, for
ow some Paccal but who have never
Hore. Here is an outline of the program
‘ed:

program common _words (input, owtput);
type {Type declerationa t7)
var (Global variables 4)
{(Prmcadnras for initialization 5)
{Procedures for input and output 9)
{Procedures for data manipulation 20)
begin (The main program &);
end.

integer k, print the k most
common words in the file
(and the number of their
occurrences) in decreasing

Knuth’'s version: literate programming

Programming Pearls

(Global variables 4) =

max_words_to_print: integer;

There should be a frequency count associated

with each word, and we will eventually want to run

Programming Pearls

cons|
beca
unds
upper
third,
the i
If cf
lette:
if i
that
(Glol
lowes

letter|

See als
This ¢

June 1

Programming Pearls

an

many words to occur often, so we want a search
technique that will find existing words quickly. Fur-
thermore, the dictionary should accommodate words
of variable length, and (ideally) it should also faci
tate the task of alphabetic ordering.

These constraints suggest a variant of the data
structure introduced by Frauk M. Liaug in his PLD.
thesis [*Word Hy-phen-a-tion by Com-pu-ter,”
Stanford University, 1083).
we may call a hash trie, requires comparatively few
operations to find a word that is already present,
although it may take somewhat longer to insert a
new entry. Some space is sacrificed—we will need
two pointers, a count, and another 5-bit field for
each character in the dictionary, plus extra space to
keep the hash table from becoming congested—but
relatively large memories are commonplace now-
adays, so the method seems ideal for the present
application.

A trie represents a set of words and all prefixes of
those words [cf. Knuth, Sorting and Searching, Section
6.3]. For convenience. we shall say that all non-
emply prefixes of the words in our dictionary are
also words, even though they may not occur as
“words" in the input file. Each word (in this general-
ized sense) is represented by a pointer, which is an
index into four large arrays called link, sibling, count,
and ch.

define trie_size = 32767 |{the largest pointer value}
(Type declarations 17) =

pointer =0 ... trie_size;
This code is used in section 3.

18. One-letter words are represented by the pointers
1 through 26. The representation of longer words is
defined recursively: If p represents word w and if
15 ¢ = 20, then the word w followed by the cth
letter of the alphabet is represented by link[p] + .

For example, suppose that link[2] = 1000,
1ink[1005) = 2000, and /ink[2015] = 3000. Then the
word *h is reprasented by the painter value %
“be" is represented by link[2] + 5 = 1005; "ben" is
represented by 2015; and "bent* by 3021. If no
longer word beginning "bent" appears in the
dictionary, link[3021] will be zero.

The hash trie also contains redundant information
to facilitate traversal and updating. If link p] is non-
zerv, Uhen link[link[p]) = p. Furthermore if
link[p] + ¢ is a “child” of p, we have ch[q] = ¢; this
makee it possible to go from child to paront, sinca
link{q ~ ch{q]] = link[link[p]] = p.

Children of the same parent are linked by sibling
pointers: The largest child of p is sibling{link| p)), and
the next largest is sibling[sibling[link[p]]]: the small-

Communications of the ACM

est child’s sibling pointer is link[). Continuing our
earlier example, if all words in the dictionary begin-
ning with "be" starl with either "ben* or "bet",
then sibling[2000] = 2021, sibling[2021] = 2015, and
sibling[2015] = 2000.

Notice that children of different parents might ap-
pear ueal (o vach ulher. For example, we might
have ch[2020] = 6, for the child of some word such
that link[p] = 2014.

If link[p) # 0, the table entry in position link{p] is
called the “header” of p's children. The special code
value header appears in the ch field of each header
entry.

If p represents a word, count [p] is the number of
times that the word has occurred in the input so far.
The count field in a header entry is undefined.

Unused positions p have ch[p] = empty_slot. In this
case link[p), sibling[p), and count|p) are undefined.

define empty._slot = 0
dofine header = 27
define move_to_prefix(#) = # «— link[# — ch[#])
define move_to_last _suffix(#) =

while link[#] # 0 do # « sibling[link[#]]

(Global variables 4) +=
link, sibling: array [pointer] of pointer;
ch: array [pointer] of emply_slot ... header;

19. (Set initial values 12) +=
for i « 27 to trie_size do ch[i] « empty_slot;
for i «— 1 to 26 do
begin ch[i] « i; link[i) «— 0; count[i] — 0;
sibling[i] — i — 1;
end;
Ch{0] «— header; link[0] —

: sibling (0] — 26;

20. Here's the basic subroutine that finds a given
word in the dictionary. The word will be inserted
(with a count of zero) if it isn't already present.

More precisely, the find_buffer function looks for
the contents of buffer, and returns a pointer to the
appropriate dictionary lacation. If the dictionary is
so full that a new word cannot be inserted, the
pointer 0 is returned.

define abort_find =
begin find_buffer « 0; return; end

(Procedures for data manipulation 20) =
function find _buffer: pointer;

label exit; {enable a quick return]

var it 1. max_word_length; (indox into buffer)
ointer; {the current word position}
g: pointer; {the next word position}
¢:1..26; {current letter code}
{(Other local variables of find_buffer 26)

June 1986 Volume 29 Number 6

Programming Pearls

begin i e=1:n e buffer(1}: define tolerance = 1000
whil

beg

(A Programming Pearls

See also
This cod|

21. (A
if lini

else
if

74
en

This cod

22. Ea
h=lini
want {
that fas
Furthe;

if the s
One
to find
ing tell]
header|
trie_sid)
prime
5-
“sprea
pp. 511
defin

(Globa
x: point

23. (S

Yo

24. We
trials h
happer
the mo
pear in|

June 198

(Md

=

uil
en|

This

: pol
delta
slot_|

sld

(€

urf
This |
32, 1
ple o
get
are d
extr

de

(Clol
coun,
word

p:pa

33.
wel

Comr,

Programming Pearls

This

39, ¢

This o

0. A
sorted)
all th
of fre(
alpha
of the

first kj

June 1

Programming Pearls

empty_slot: 18,19, 21, 27,
29, 31.
e0f:9,15.

f:37, 40

Jalse: 14, 31, 33.
find._buffer: 20, 34.
$61: 9,15, 1.

initialize: 5, 8.

input: 2, 3,9, 11, 15, 16.

integer: 4, 5, 9, 26, 30, 36,
40.

k: 37, 40.

Knuth, Donald Ervin: 17

large_count: 36, 37, 38,
40.

last_h: 24, 25, 26.

lettercode: 11,12, 15, 16.

Liang, Franklin Mark:
17.

max_word_length: 13, 16,
20, 35, 41.

max_words_to_print: 4,
10, 41.

move_to_last_suffix: 18,
37.

‘move_to_prefix: 18, 35.

read_int: 9, 10.

read_in: 15.

return: 7.

sibling: 17, 18, 19, 27, 28,
20,31, 37, 38, 40.

slot_found: 30, 31.

sorted: 36, 37, 38, 40.

tolerance: 24.

total _words: 36, 37, 38,
41

trie_size: 17,19, 22, 24,
25.

trie_sort: 37, 39, 40.

frue: 16, 31, 34.

uppercase: 11, 12

word_length: 13, 15, 16,
20.34. 35.

word_missed: 32, 33, 34,
41

word_truncated: 13, 14,
16, 41.

write: 35, 41.

write_In: 35, 41.

x: 2

(Advance p to its child number ¢ 21)

Used in section 20.

(Compute the next trial header location #, or
abort_find 25) Used in sections 27 and 31.
(Fstahlish the value of max words_to print 10)

Used in section 8.

(Find a suitable place h to move, or abort_find 31)

Used in section 29.

{Get set for computing header locations 24)

Used in sections 27 and 31.

(Global variables 4, 11, 13, 18, 22, 32, 36)

Used in section 3.

(Input the text, maintaining a dictionary with fre-
quency counts 34) Used in section 8.
{Insert child ¢ into p's family 28) Used in section 21.

Communications of the ACM

(Insert the firstborn child of p and move to it, or
abort_find 27) Used in section 21.
(Link p into the list sorted{f) 38) Used in soction 37.
(Move p's family to a place where child ¢ will fit, or
abort_find 29) Used in section 21.
(Other local variables of find_buffer 26, 30)
Used in section 20.
{Output the results 41) Used in section 8.
{Procedures for data manipulation 2o, 37)
Used in section 3.
{Procedures for initialization 5) Used in section 3.
{Procedures for input and output 9, 15, 35, 40)
Used in section 3.
(Read a word into buffer 16) Used in section 15.
{(Set initial values 12, 14,19, 23,33) Used in section 5.
{Sort the dictionary by frequency 39)
Used in section 8.
{The main program 8) Used in section 3.
(Type declarations 17) Used in section 3.

8th page

June 1986 Volume 29 Number 6

Engineering: "“Design
Mclroy’s exposition under Constraints

* A wise engineering solution would produce—or better, exploit—
reusable parts.

« Very few people can obtain the virtuoso services of Knuth ...but old
UNIX hands know instinctively how to solve this one in a jiffy. Resources

« ... Everything there—even input conversion and sorting—is
programmed monolithically and from scratch. In particular the isolation
of words, the handling of punctuation, and the treatment of case
distinctions are built in. Even if data-filtering programs for these exact
purposes were not at hand, these operations would well be
implemented separately: for separation of concerns, for easier
development, for piecewise debugging, and for potential reuse.

« The simple pipeline given above will suffice to get answers right now,
not next week or next month. It could well be enough to finish the job.
But even for a production project, say for the Library of Congress, it
would make a handsome down payment, useful for testing the value of
the answers and for smoking out follow-on questions.

Reuse++

ME

CSE403 Sp12

Challenger Disaster. Feynman

The usual way that such engines are designed ... may be called
the component system, or bottom-up design. First it is necessary to
thoroughly understand the properties and limitations of the
materials to be used (for turbine blades, for example), and tests are
begun in experimental rigs to determine those. With this knowledge
larger component parts ... are designed and tested individually. As
deficiencies and design errors are noted they are corrected and
verified with further testing. ... Finally one works up to the final
design of the entire engine, to the necessary specifications. There
IS a good chance, by this time that the engine will generally
succeed, or that any failures are easily isolated and analyzed
because the failure modes, limitations of materials, etc., are so well
understood. ...

Roughly, build bottom-up with

components with known properties
CSE403 Spl2 6

The Space Shuttle Main Engine was handled in a different manner,
top down, we might say. The engine was designed and put together
all at once with relatively little detailed preliminary study of the material
and components. Then when troubles are found in the bearings,
turbine blades, coolant pipes, etc., it is more expensive and difficult to
discover the causes and make changes. For example, cracks have
been found in the turbine blades of the high pressure oxygen
turbopump. Are they caused by flaws in the material, the effect of the
oxygen atmosphere on the properties of the material, the thermal
stresses of startup or shutdown, ... or mainly at some resonance at
certain speeds, etc.? ... Using the completed engine as a test bed to
resolve such questions is extremely expensive. One does not wish to
lose an entire engine in order to find out where and how failure occurs.
Yet, an accurate knowledge of this information is essential to acquire
a confidence in the engine reliability in use. ...

A further disadvantage of the top-down method is that, if an
understanding of a fault is obtained, a simple fix, such as a new shape
for the turbine housing, may be impossible to implement without a
redesign of the entire engine.

The point?

« Software design — like all engineering design — has a set
of dimensions and criteria to consider

— Correctness, cost, performance, robustness, usability,
understandability, modifiability, ...

— Some of these properties come directly from parts of
the software system

— Others are more properties of the overall system,
sometimes called emergent properties

« These are constraints that, in part, distinguish software
engineering from the theoretical foundations of
computation — that work is critical, and software
engineering augments it with constraints

« Underlying all effective software design — indeed,
computational thinking — is the notion of abstraction

CSE403 Sp12

N
Continuous & iterative

« High-level (“architectural®) design

s — What pieces?

| — How connected?

o| * Low-level design

’ — Should | use a hash table or binary search tree?
é * Very low-level design

\}/ — Variable naming, which language constructs, etc.
e

— Boolean Zen

— About 1000 design decisions at various levels are
made in producing a single page of code

N\~ CSE403 Spl2

A few key criteria for software design

Accommodating change — taking advantage of software’s “soft’-
ness

— Agile Manifesto; “Software that does not change becomes
useless over time” [Belady & Lehman]; ...

Generality vs. performance

— In math, a more general theorem is always better than a less
general one

— In software, a less general solution may consume enough
fewer resources to dominate a more general solution — but
don'’t forget #1

Complexity — physical properties constrain physical design, but
fewer constraints are imposed by software as a material

CSE403 Spl2 10

Abstraction
Kramer, CACM 2007

« “...[remove] detail to simplify and focus attention based on the
definitions:

— The act of withdrawing or removing something, and;

— The act or process of leaving out of consideration one or
more properties of a complex object so as to attend to
others.

« “...the process of generalization to identify the common core or
essence based on the definitions:

— The process of formulating general concepts by abstracting
common properties of instances, and;

— A general concept formed by extracting common features
from specific examples.”

CSE403 Spl2 11

Computational thinking
Wing, CACM 2006

« “Computational thinking is using abstraction and decomposition
when attacking a large complex task or designing a large
complex system. It is separation of concerns. It is choosing an
appropriate representation for a problem or modeling the
relevant aspects of a problem to make it tractable. It is using
iInvariants to describe a system's behavior succinctly and
declaratively. It is having the confidence we can safely use,
modify, and influence a large complex system without
understanding its every detail. It is modularizing something in
anticipation of multiple users or prefetching and caching in
anticipation of future use.

« “Thinking like a computer scientist means more than being able
to program a computer. It requires thinking at multiple levels of
abstraction...”

CSE403 Spl2 12

Mechanisms for abstraction?

 Methods
« Classes

In small groups list other
software abstraction mechanisms

Two minutes

CSE403 Sp12

Decomposition and composition g2

¢
3

* The technique of mastering complexity has been EEESEEL

(1756-1791)

known since ancient times: Divide et impera
—Dijkstra, 1965

— ...strategy of gaining and maintaining power by
breaking up larger concentrations of power into chunks
that individually have less power than the one
iImplementing the strategy. —Wikipedia, today

* Divide and conquer. Separate your concerns.
Yes. But sometimes the conquered tribes must
be reunited under the conquering ruler, and the
separated concerns must be combined to serve

a single purpose.” —M. Jackson, 1995

CSE403 Sp12 14

Benefits of decomposition

» Decrease size of tasks
« Support independent testing and analysis

* Separate work assignments
« Ease understanding

 In principle, can significantly reduce paths to consider
by introducing an interface

— Consider the Knuth and Mcllory examples
— Many more...

CSE403 Spl2 15

Alan Perlis quotations: abstraction

 If you have a procedure with 10 parameters, you
probably missed some.

* One man's constant is another man's variable.

« Simplicity does not precede complexity, but follows it.

— Our designs are so complex there is no hope of

getting them right first time by pure thought. To
expect to is arrogant. —Brooks

CSE403 Spl2 16

Anticipating change & design

« ltis generally believed that to accommodate change
one must anticipate possible changes

— Counterpoint: Extreme Programming

« By anticipating (and perhaps prioritizing) changes,
one defines additional criteria for guiding the design
activity — what abstractions one should choose

* Itis not possible to anticipate all changes

CSE403 Sp12

17

KWIC: “hello world” of module design

The KWIC index system accepts an ordered set of lines; each line
IS an ordered set of words, and each word is an ordered set of
characters. Any line may be “circularly shifted” by repeatedly
removing the first word and appending it at the end of the line. The
KWIC index system outputs a list of all circular shifts of all lines in

alphabetical order.

CSE403 Sp12

18

Another script...

awk '{print $0
for (i = length($0); i > 0; i--)

if (substr($0,i,1) == " ")

print substr($0,i+1l) "\t" substr($0,1,i-1)
}' $1 | sort -f | awk '
BEGIN {FS = "\t"; WID = 30}
{printf ("%$" WID "s $s\n",
substr ($2,length($2) -WID+1) ,substr($1,1,WID))

} v

« Why not always the best?
« What might change?

* More in lecture and in Reading lll

CSE403 Sp12

19

CSE403 e Software engineering e sp12

Tuesday Wednesday | Thursday Friday

* Group * Design « UML * Design
meetings * Progress
*SRS due report due

