
CSE 403
Things are going going badly. What to do?

Guest lecture: Megascale
software engineering

• Engineering the Facebook News Feed: architecture, design, implementation,
deployment

• With 1 billion users, ~1 million servers: how do you do this?

• Ari Steinberg, formerly from Facebook

• Monday, November 26, 2012

Announcements

• Deliverables for 11/19 release (due 11:59PM)

• Documents up to date: req, arch, design, schedule

• Release notes

• Status report for the release (not due until 11/20) -- content should be
part of 11/21 presentation

• Presentations on 11/21: 7 minutes, same logistics as before. Deposit
presentations (pdf) in dropbox by 11:59PM on 11/20

Release notes
• A description of what you just released

• High level, thematic description

• Major functionality

• Exceptions of what might not be working

• How to access the release

• Approximately a “README”

• “We’re proud to announce release 1.4 of...”

• Largely for external consumption

• About 1 page

Project Presentations, 11/21 (7 minutes)

• Operations Review by manager or project manager-- similar to weekly status
but for the release cycle

• What did you say you were going to do? What did you do? (1 minute)

• What are you going to do in the next cycle? (1 minute)

• What are the issues? (1 minute)

• What’s your current status on platforms and browsers?

• Report on a metric -- or if not in place, scale from 1(disaster) - 10
(exceeding) and why (1 minute)

• Demo (1 minute)

• Questions and Answers (1 minute)

Announcements

• Extension! Your final projects aren’t due until
12/08

• Final moved to 12/07 (Friday)

• Final presentations on 12/10 (Monday) -- 14
minutes instead of 7

• Release 2 presentations on Wednesday, 11/21--
should reflect what you are going to do with the
additional time from the extension

Final release

• Updated docs, release notes, status report (part of preso) as usual

• Project summary document

• What did you deliver?

• Quantity: How much did you deliver?

• Quality: How good was it? (Design/UI/UX matters, bugs, usability, code)

• Achievement of vision

• Software engineering principles

• See wrap up and Joel on Software article

• Answer all the questions in the wrap up (and more)

Presentation
• What you said you were going to do (~1 minute)

• What you did (~1 minute)

• What you would do next

• Next release (~1 minute)

• Strategically (~1 minute)

• Issues (~1 minute)

• Demo (~3 minutes)

• Important things you learned (~2 minutes)

• Discussion of checklist (~2 minutes)

• Questions and answers (~2 minutes)

Presentation logistics

• Date: December 10, 2012

• Time: 8:30a-10:20a (Finals slot for this class)

• Location: TBD

• Basically the same format as in the past, but 14 minutes in length

• Order of presentations to be announced by 10/7

• You only have to attend the one previous to your time slot (“on deck”) and
your time time slot (but welcome to attend all)

Wrap up write up

• Goal is to understand your product process and infrastructure in addition to
what you built

• Answer all the questions (NOTE: Questions are in draft mode until 11/26)

• Your document contains the answers or you make submit a link to an online
document

• Okay to hyperlink to the answers

• Anything additional you’d like to add

Correction

SSD vs NVRAM

CSE 403
You’re project is going badly. What to do?

Things are going well

• Great!

• Are you sure?

• Are you working hard enough?

• Are there dark days ahead?

• Catch your breathe, but be prepared!

Things are going badly,
what to do?

• You’re late

• It doesn’t work

• Company sucks

• You see the dark clouds on the horizon
(code debt?)

You’re late

Why?
• Optimism

• Poor specifications

• Incomplete knowledge

• Changes in requirements

• Couldn’t hire fast enough/at the right time

• Misjudged the capabilities of people

• People leave the team

• People aren’t getting along

• Bad management

Why? (continued)

• Not enough process

• Too much process

• Fire-fighting issues from a previous release

• Personnel emergencies

• Buggy (third party) software

• Hardware problems

• Didn’t know how hard it was going to be

• Didn’t acknowledge problems earlier

Why? (continued)
• “Just one more feature”

• Badgered by management to do something else (or more)

• Cynicism

• Knowing dependencies are going to be late

• Conflict of ideas

• Paralysis by analysis

• Didn’t think of “everything” (Under thought what needs to be done)

• Too much time on infrastructure

• Not enough time on infrastructure (code debt accumulation)

Why? (continued)

• Things are going well

• Dependencies are perceived to be late, so you adjust too

• Changes in strategies

• Lay offs

• Change in management

• Rumors

• Code debt

• Failure to accurately estimate

Why? (continued)

• Bad architecture

• Bad design

• Bad code

• Bad integration

Philosophically, these “problems” are just
the common case!

Why? Failure to
accurately estimate

• Engineers are typically optimistic

• For all the (external) causes for lateness, burden often falls on engineers to
estimate how long something will take

• How long it takes to implement/debug is often times hard to estimate too
(internal cause)

• Engineers are bad at estimating

• External pressures make engineering estimates unacceptable

• Back to the drawing board, perhaps with unrealistic constraints

• Re-estimation (which takes more time)

Responses

• Engineering manager doubles (or triples) the estimate of the engineering
team

• Engineers “sand bag” their estimates

• Results in unrealistic estimation

• Change to train model or continuous release (just a panacea?)

• “Scapegoating”

• Break throughs in thinking (multi-month estimate reduced to minutes?)

Boeing 787: Not just
software

• Initial first flight scheduled 7/07

• 9/07, announce 3 month slip

• 10/07, announce another 3
month slip

• 1/08, another 3 month slip

• 4/08, slip to 4Q08

• 11/08, another slip

• 12/08, slip to 2Q09

• 6/09, slip to end of 2009

• First flight December 15, 2009

In construction

Sagrada Familia
• Large Catholic church in

Barcelona

• Unesco World Heritage site

• Started in 1882

• Gaudi involved in 1883

• Many changes/project slips over
tim

• Still unfinished! Largely due to same
problems we are discussing!

Late? What does that
mean anyway?

• Feature release model: Miss the date

• Train release model: Less on the train

• Continuous release model: Less stuff
projected to be done by a given date

Options

• Add more people

• Cut a few features

• Cut a lot of features

• Slip the date by a little

• Slip the date by a lot

• Go back to the “drawing board” (major replan)

• Remove a few people

• Work harder, longer, smarter

Adding more people

Adding more people
(our hope)

Adding more people
(potential reality)

People

M
on

th
s

“Nine women ca
n’t h

ave a baby in
 a m

onth”

People vs. Productivity

Idealized(

Pr
od

uc
tiv

ity

People

Reality(

People vs. Productivity
Pr

od
uc

tiv
ity

People

Dream&

People vs. Productivity
Pr

od
uc

tiv
ity

People

Horror$

People vs. Productivity
Pr

od
uc

tiv
ity

People

When your project is late, you
might be here (looking

forward)

Brooks’ law

Brooks's law is a principle in software
development which says that "adding people to a
late software project makes it later"

Why does adding more
people fail?

• Takes resources to recruit (impeding real work)

• Communication costs go up with more people (potential pairwise
communications are O(n^2), groups are O(e^n))

• Takes resources to train

• Re-planning takes time

• Disruption of organization, new roles get assigned

Why does adding more
people fail?

• Need to communicate new plan

• Chaos and confusing

• Feedback to rest of company requires bottom-up, top-down, bottom-up,
top-down communication (more time)

• New plan not any better than the old plan

• People stop working waiting for the re-plan

• Worse, people leave during the re-plan

• Need to account for people leaving, so more re-planning

• Worse case: You enter the “death spiral”

Could adding more
people work?

• Strategic hiring practice in place

• Contractors with specific skills could help

• Engineering process that supports adding
new people

• Overall functioning organization

Cut a little

Cut a little

• Might work

• Pulling out partial features is work, risk

• Dependency assessment

• When are you going to get this work done?

• Did you just push your problems to the
next release?

Slip a little

Slip a little

• Lots of pressure

• Notoriously underestimate how much additional time you need

• Still need to re-plan

• Disturbs the established pace/harmonic

• Screws up next releases

• Doesn’t solve the problem?

Other alternatives

• Choices: Cut a lot of features, slip the date by a
lot, go back to the “drawing board”

• Still need to re-plan

• Still need to estimate (are you going to do a better
job?)

• Jeopardizes strategic external commitments

• Is all this stuff really necessary?

All choices require
(re-)planning

• Re-planning takes time

• Which must be taken into account

• Wasted time during re-plan?

• Approval/Communication is top down, bottom up,
top down, bottom up, top down...

• More caution -- CYA -- adds more inefficiency

Working harder, longer,
smarter

• Might work

• Not long term sustainable

• Motivational issues

• Cynicism is contagious

• Should management’s failure to plan and
lead constitute an emergency on the
engineering team?

Choices for engineers

• Be positive and proactive

• Stay out of the way of the “ball of blame?”

• Be cynical (bad)

• Quit (what are the consequences?)

Software death spiral

Software death spiral

Things are late

Replan

Things are later

Disillusionment

People quit

Things are later

Replan

Things are later

Replan

Things are later

How does this relate to trains and
continuous processes?

• Trains: reset expectations on which trains
features will go out

• Continuous: reset expectations when
features will come out

• Tactical re-planning less?

• Is there less accountability?

Take aways

• Uncertainty and change are parts of the “normal”
process; being late/behind is a common side effect

• Optimism is a key reason for being late

• Brooks’ law: Adding new people to a late software
project make it later

• Solution: Add people, small cuts, big cuts, small
slips, big slips...but all have issues

• Work harder, longer, smarter: Long term issues
too

What does this mean
for your project?

