
CSE 403
Testing, part II (Quality Assurance),

bugs, and code reviews, part 2

Announcements

• Deliverables for 11/19 release (due 11:59PM)

• Documents up to date: req, arch, design, schedule

• Release notes

• Status report for the release (not due until 11/20) -- content should be
part of 11/21 presentation

• Presentations on 11/21: 7 minutes, same logistics as before. Deposit
presentations (pdf) in dropbox by 11:59PM on 11/20

• Final release due on 12/03

Project Presentations, 11/21 (7 minutes)

• Operations Review by manager or project manager-- similar to weekly status
but for the release cycle

• What did you say you were going to do? What did you do? (1 minute)

• What are you going to do in the next cycle? (1 minute)

• What are the issues? (1 minute)

• What’s your current status on platforms and browsers?

• Report on a metric -- or if not in place, scale from 1(disaster) - 10
(exceeding) and why (1 minute)

• Demo (1 minute)

• Questions and Answers (1 minute)

Browser Usage

Internet Explorer

Firefox

Mozilla

SafariChrome

Internet Explorer
Usage

9

8

7

Final release

• Project deliverable

• Quantity: How much did you deliver?

• Quality: How good was it? (Design/UI/UX matters, bugs, usability, code)

• Achievement of vision

• Software engineering principles

• See wrap up and Joel on Software article

• Answer all the questions in the wrap up (and more)

Transparency (Compensation)
(tip of the day)

• You (nearly) have a job offer

• You are negotiating for compensation (mostly
salary but...)

• How do you know if it’s a good deal?

CSE 403
Testing, part II (Quality Assurance),

bugs, and code reviews, part 2

Types of testing

• Unit testing

• Regression testing (different definition that David talked about)

• Coverage testing

• Monkey testing

• Code review (is this testing?)

• Performance testing, load testing, scalability testing (maybe later)

Unit testing drill down

Test cases
• How many?

• Can we test all cases?

• What tests do we want to run?

• How do we enumerate them?

• Can we partition the space?

• Tests can only reveal the presence of bugs/defects/
problems -- not verify the correctness or absence
of bugs

Partition the input space to understand
test cases you should write

• In theory, you only need
to select one test in
each partition

• In practice, this is hard --
problem specific

• I don’t know how to do
this!

• Edge cases are often the
problem

What’s on the boundary? (i.e. what’s an
edge case?)

• Off by one errors

• Smallest, largest cases

• Zero, null, empty containers

• Null pointers

• Overflows in arithmetic

• Type errors

• Aliasing

• Exceeding maximum (buffer overflow)

• Circularity

Test harness

• We’ll use pytest

• You’ll use the Django test execution framework?

• Can we really test the command line parsing?

• We’ll test the triangle function code

• Assuming we want to expose this interface

Type errors (in Python)
• triangle function expects 3 integer

arguments

• Types aren’t explicitly declared

• Who should catch these errors?

• What do the following calls return?

• triangle(‘a’, ‘a’, ‘a’)

• triangle (‘z’, ‘z’, ‘a’)

• triangle(‘a’, ‘z’ ‘z’)

• triangle(‘a’, 0, 2)

• triangle (‘a’, 1, 2)

import sys

def triangle(x, y, z):
 if(x<=0 or y<=0 or z<=0
or (x+y<=z or x+z<=y or y
+z<=x)):
 print 'false'
 elif(x == y == z):
 print 'equilateral'
 elif(x==y or y==z or
x==z):
 print 'isoscele'
 else:
 print 'scalene'

if __name__ == "__main__":
 main()

When should you write
unit tests?

• Part of the design process -- helps you
define the interface?

• After the design process

• After implementing

• After integration -- make sure there aren’t
many gaps

• After a bug is found

Regression testing
• A regression suite is a collection of unit tests that you run to test the sanity of

the system

• Typically automated

• A regression test is a unit test in the regression suite

• Slightly different than David’s definition -- a unit test after a bug a found

• Run regularly (daily) and irregularly (before release, after big code changes
before checking in)

• Gives confidence that things are still working or you didn’t break anything

• You can’t aggressively “re-factor” unless you have a good regression suite*

• *...if your refactoring changes the interfaces against which you run your test,
this doesn’t help -- your tests are broken

Monkey testing
• Slang for functional/feature testing?

• Manually testing the application by clicking on buttons, filling out fields,
observing results

• Walk through all the features

• New

• Old (regression)

• On all the platforms (browsers, backends, databases, etc.)

• Do it every release?

• Can this be automated?

Code coverage

• Collection of tests so that every line of executable
code gets executed

• Sanity test

• Especially important in non-statically checked/
typed languages(?)

• Exception paths are particularly interesting

• What are the success/failure conditions?

• Uncaught exceptions, memory leaks, type errors(?)

Bugs

What are bugs?

• Algorithm, coding, type, logic errors for sure

• Incomplete/Missing functionality

• Mismatches between requirements and
implementation

• Failure to meet strategic goals

• Ease of use difficulties

• User interface errors

Categorizing bugs

• Severity : How “bad” is it?

• Priority: How important is it that we fix it (and when)

• Subsystem: Which module is the bug located, if known)

• Release: Which release(s) have the bug?

• Ownership: Who is responsible for fixing it?

• Status: Open, Assigned, Fixed, Closed

• Platforms: Operating systems, platform versions, browsers

Writing bug reports

• Use a bug tracking tool

• Identify all the category information

• Written explanation of:

• What the bug is

• How to trigger it

• Screen shots if available or applicable

• Data to support trigger if appropriate

• Search for “good bug reports”; lots of good advice on the web

Severity and Priority

• Severity: Critical, Major, Average, Minor, Exception

• Priority: Resolve Immediately, Give High Attention, Normal, Queue, Low
Priority

• Severity X Priority ->25 choices!

• What do these mean?

• Argument in every company I’ve worked for

• Simplified from 2 dimensions (severity, priority) to 1: “show stopper,” high,
medium, low

• Overloaded terminology: Single dimension system called “priority”

Reasoning about bugs

• Destroys data

• Crashes/Hangs system

• Feature not completed(?)

• User can’t get task completed

• Inconsistent/confusing presentation

• Visual/presentation issues

• Annoyances

• CEO demands(?)

Red == show stopper
Orange == high
Yellow == medium
Green == low

Bug tracking

• Tools (github, trac, bugzilla)

• Process

• Who files them? (Mostly dev team and PMs but others too)

• Project manager, product manager, or engineering manager oversees

• Engineering manager and product manger negotiate

• “Kill bugs” day

• Features included? Wish lists?

Example bug report

• Priority: Show stopper

• Subsystem: Donation processing

• Release: 20121031

• Ownership: yamamoto

• Status: Assigned

• Platforms: All browsers

Bug report example

• What: No donations can be completed because
credit card field is never recognized as valid, even
when a correct credit card number is entered

• How: Go to any donation page (e.g. https://
www.charityblossom.org/donate/242219/) and
correctly type in valid values for all fields and hit
“Donate Now”

• System always reports, “Invalid credit card
number”

Screen shots

Cost of bugs

Cost of bugs

Bug in Knight Capital
Group/NASDAQ
costs $440 million
resulting from glitch in
facebook IPO.

Cost of bugs

In 1988, Robert Tappen
Morris exploits buffer
overflow in gets()
library call to cause
$100 million in damage

Cost of bugs

In 1999, Mars Climate
Orbiter lost in space.
Cost: $665 million.
Bug: Teams used both
metric units and
English units.

Cost of bugs

Y2K bug. Not
enough digits to
store the year,
causing computers
to think 2000 was
1900. Cost: $297
billion

Cost of bugs

Therac-25
delivers100 times
intended radiation
(according to
Wikipedia) and 6
deaths

Aside: Stuxnet
• Exploitation of bug in Microsoft Windows to propagate a worm

• Target is a Siemens control system

• Initial infection through USB thumb drive

• Damaged Iranian Uranium Enrichment infrastructure

• Compromised digital certificates

• Supposedly a very sophisticated test system replicating target infrastructure

• Who writes this software? Should the bugs be patched? Bug vs. feature?

• All very current and murky

• Caveat: All of this is based on information from Wikipedia and the New York
Times. Trust at your own risk.

Elevator design bug

•Walk in
•Turn around
•Choose the floor you are going

Question: Which side has the elevator buttons?

Elevator design bug

It’s on the right...

in the left elevator...

It’s not on the left...

but on the left in the right elevator.

It’s not intuitive, most can’t remember this, and they get it wrong about 50% of the time.

Evevator design bug
• Don’t know if it was designed this way (if it was, what was the reason?)

• Maybe an oversight (a bug)

• When was the problem discovered?

• Fix is to put buttons on the right (or left) in both elevators -- usage
consistency

• Cost to fix it pretty cheap at design time

• Probably pretty expensive once it was installed

• Ongoing cost (penalty) for not fixing the bug

• Is there a positive unintended consequence?

Finding bugs

• During requirements

• During development

• During testing

• In the field (Really?)

• Examining the logs

When should you look
for/find bugs?

• Conventional wisdom says sooner is better

• Conventional wisdom says sooner is
cheaper

• But in current times, is this still true?

• Depends on the application...

Code reviews

Code reviews

Code review is systematic examination (often
known as peer review) of computer source code.

My addition: It’s (usually) a human process

Code reviews: why?

• Find bugs

• Evaluate architecture and design

• Share knowledge

• Share best practices

• Propagate “standards”

How and when?

• Formal

• Informal: Pair programming, side by side
debugging

• Whenever you do a checkin

• When you fix a bug (especially when close
to a release -- e.g. after “code freeze”)

• After you compile, before you execute(?)

Formal

• From the “dinosaur age” of programming?

• Line by line review, often of large bodies of code

• 1 minute/line, plus 1minute/line prior to code
review

• Reader, author of the code, recorder, 2 reviewers

• Reviewing 60 lines of code costs 10 people-hours

• Useful?

Reviewing triangle

import sys

def triangle(x, y, z):
 if(x<=0 or y<=0 or z<=0 or (x+y<=z or x+z<=y or y+z<=x)):
 print 'false'
 elif(x == y == z):
 print 'equilateral'
 elif(x==y or y==z or x==z):
 print 'isoscele'
 else:
 print 'scalene'

if __name__ == "__main__":
 main()

•Are degenerate triangles valid?
•Is 0 a valid length?
•“isosceles” vs. “isoscele”?
•type checking -- caller or callee?
•print vs. return value?
•comments?
•coding standards?
•sort x, y, z into a, b, c --> only need to check if
(a < 0 and a + b < c) for invalid triangles

Reviewing triangle

def main():
 print 'Line segments:',str(sys.argv[1:])
 x = atoi(sys.argv[1])
 y = atoi(sys.argv[2])
 z = atoi(sys.argv[3])
 triangle(x, y, z)

if __name__ == "__main__":
 main()

Type check in the callee

import sys

def triangle(x, y, z):
 if(x<=0 or y<=0 or z<=0 or (x
+y<=z or x+z<=y or y+z<=x)):
 print 'false'
 elif(x == y == z):
 print 'equilateral'
 elif(x==y or y==z or x==z):
 print 'isoscele'
 else:
 print 'scalene'

if __name__ == "__main__":
 main()

Original
def triangle(x, y, z):
 if((isinstance(x,int) or isinstance(x,float))
and (isinstance(y,int) or isinstance(y,float)) and
(isinstance(z,int) or isinstance(z,float))):
 if(x<=0 or y<=0 or z<=0 or (x+y<=z or x
+z<=y or y+z<=x)):
 print 'false'
 elif(x == y == z):
 print 'equilateral'
 elif(x==y or y==z or x==z):
 print 'isoscele'
 else:
 print 'scalene'
 else:
 print 'false'

Proposed revision

Type check in the caller

Original

def main():
 print 'Line
segments:',str(sys.argv[1:])
 x = atoi(sys.argv[1])
 y = atoi(sys.argv[2])
 z = atoi(sys.argv[3])
 triangle(x, y, z)

if __name__ == "__main__":
 main()

Proposed revision

def main():
 if len(sys.argv) != 4:
 print "must call with 3 line segment
lengths"
 sys.exit(1)
 # will raise ValueError if inputs are not
numeric
 segments = map(float, sys.argv[1:])

 triangle(*segments)

if __name__ == "__main__":
 main()

How important are
code reviews?

• Formal -- maybe, maybe not

• Peer-to-peer, informal -- important

• Knowledge transfer -- useful but infrequent

• Rigid process (“code review before every
bug fix”) -- sometimes and maybe

• As usual, “it depends” -- YMMV

Take aways

• Testing (unit, regression, coverage, monkey)

• Specifying unit test cases is hard

• But there are still more (load, integration, system, response, scalability ...)

• Bugs: what are they?, categorization, bug tracking systems/processes/policies

• Code reviews

