CSE 403

Announcements

Deliverables for 11/19 release (due | 1:59PM)
® Documents up to date: req, arch, design, schedule
® Release notes

® Status report for the release (not due until |1/20) -- content should be
part of | [/2] presentation

Presentations on | 1/21: 7 minutes, same logistics as before. Deposit
presentations (pdf) in dropbox by | 1:59PM on 11/20

Final release due on 12/03

Release notes

® A description of what you just released
® High level, thematic description
® Major functionality
® Exceptions of what might not be working
® How to access the release
® Approximately a “README”
® “We'’re proud to announce release |.4 of...”
® Largely for external consumption

® About | page

Project Presentations, | |/21 (7 minutes)

® Operations Review by manager or project manager-- similar to weekly status
but for the release cycle

® What did you say you were going to do? What did you do? (I minute)
® What are you going to do in the next cycle? (I minute)

® What are the issues? (I minute)

® What’s your current status on platforms and browsers?

® Report on a metric -- or if not in place, scale from | (disaster) - 10
(exceeding) and why (| minute)

® Demo (| minute)

® Questions and Answers (| minute)

Too much work?

Project
Homework

Platform/browser issues?

What to do!?

Talk to instructor or TA

No need to suffer/’complain” in silence

One-on-one’s

(tip of the day)

® Regularly scheduled meeting with your manager
(about once a week)

® Communication mechanism
® Weekly status update

® Other (strategic) issues

® Don’t discount the value

® Red flag if your boss isn’t doing this!?

CSE 403

Things are working and you

are starting to grow...

Congratulations! You’ve deployed your application!
Things are working

You are starting to get customers/traffic/users
...system is slowing down! or crashing!

Good news: Success...You need to scale

Scale up

Monitor and measure

Fix the bugs

Tune

Replicate (stateless)

Cache

Database ar

chitecture

Measure and profile

® Unix command line tools (ps, top, vmstat,...)
® Munin

® Database tools

® | og files

® Django instrumentation tools

CPU utilization

Disk performance
Database health
Network utilization
Webserver traffic

Back end servers

Munin

(http://munin-monitoring.org/)

/‘ EMunin :: localdomain :: loca EFAQS ~ Charity Blossom *
€« C M [0 www.charityblossom.org/munin/localdomain/localhost.localdomain/index.html
Mon 00:00 Mon 12:00 2 23
Cur. Min: Avg: Max:
@ Comnitted transactions 20.83 16.24 28.20 54.68 Conmitted transactions
B Rolled back transactions 5.01 M Rolled back transactions

3.86 6.84 13.47
Last update: Mon Oct 29 18:45:11 2012

24 25 2 27 28 29
Cur: Min: Avg: Max:
20.08 8.38 28.85 56.54

4.82

1.89 7.001 13.93
Last update: Mon Oct 29 18:35:10 2012

:: PostgreSQL transactions

PostgreSQL transactions - by day

Trans / sec

@ Conmnitted transactions
B Rolled back transactions

Mon 00:00 Mon 12:00
cur Min: Avg: Max:
20.06 15.46 27.42 53.94

S5.01

A 6.84 13.47
Last update: Mon Oct 29 18:45:11 2012

PostgreSQL transactions - by week

Trans / sec

22 23

@ Connitted transactions
B Rolled back transactions

24 25 26 27 28 29
Cur: Min: Avg: Hax:
19.30 7.61 28.07 55.71

4.82

. 8 7.01 13.92
Last update: Mon Oct 29 18:35:11 2012

processes
:: Fork rate
Fork rate - by day Fork rate - by week

20 20

18 18

16 16
2 14 5 &)
g S 1w
b o
= 10 ey 10
£ 8 L 8
& ~
2 6 2 6

4 4

2 2

Mon 00:00 Mon 12:00 22 23 24 25 2 27 28 29
cur: Min Avg: Max: cur: Min: Avg: Hax:
@ forks 7.03 5.90 8.94 15.55 @ forks 6.86 3.93 9.12 16.13
Last update: Mon Oct 29 18:45:04 2012 Last update: Mon Oct 29 18:35:04 2012

2 Number of threads

Niumhber of threzade - hv dav

Numhber of threzade - hv wesk

Code changes

® Fix bugs

® |Improve code/Change algorithms

® Database indexing/query optimization
® Database tuning

® System tuning

Bigger machines

® Bigger CPU

® More CPUs

® Bigger caches
® More memory
® More bandwidth

® Bigger database

Scale out

® Add more web servers

® Add more application servers
® More processes/threads?

® |[ssues

® Statefullness

® Server affinity

Caching

® Store read-only data in web server

® Content distribution network (read only data)

® Code changes to cache data in app server (avoid database round trips)
® Snippet caching (don’t generate html on every request)

® Memcached (distributed shared memory as a key value store)

® In general, bring (read only) data closer to the user

Scaling up through

caching

static content

cached content

=
=
pudl &1 db tuning
load
lanc === == ="
==l hannd = b~
|
— —
= |z) =s|/ —
o 5 /S —
—J = .
==t/ application database server/
web server == datab
- server | =g atabase
E I-:.,_ﬂ
ad memcached

web servers application servers

Aside: Rules of thumb

d | \R
U INHITOVWY

| .
>NOouU

U:.9 NS
° IIS

Ul ns
100 ns

iV,
oy

N ("<
20,000 ns

b
(o R
w
ct
w
y
4]
— |
Ty
D
"
n
3
2

o

R network 10,000,000 ns
R iisk 30,000,000 1
S CA->Netherlands->CA 150,000,000 ns

But 2 years old!

When you outgrow a

single database

What are you going to do!

Scaling databases (RDBMSes

mostly)

® Likely culprit of scale, performance, response time
issues

® Can you stay on a single DB?

® Tuning, indices, bigger machines, more memory...

® Off load work from the RDBMS

e No!
® What to do now?

® Add more databases and partition (but this is sort of hard!)

Scale up through

replication

® Read/Write partitioning
® Horizontal scaling (sharding)

® Vertical scaling

Read/write partitioning

® Most accesses to your system might be reads (90% reads, 10% writes)
® Reads can proceed in parallel

® Writes block readers and writers

® Replicate databases with multiple copies that can be read from

® Allow writes only to one instance (master)

® Have to propagate writes to read copies

® Consistency issue!

Read/write partitioning

PPPPPPPPPPPPPPPPPP

Horizontal partitioning

(sharding)

® Separate data across multiple machines
® Schema replication

® Machines hold full rows of data

® Rows are split across machines

e Know which rows are on which machines
(“hash a primary key to a machine”)

Rorizontal partitioning

| SSN Name | City

1234234 |Mary | Houston

1345345 | Sue Seattle
SSN Name | City

| 345343 | Joan | Seattle

| 234234 | Ann Portland

Customers
SSN Name | City
234234 |Mary | Houston
345345 | Sue Seattle
345343 | Joan | Seattle
234234 | Ann Portland
-- Frank | Calgary
-- Jean | Montreal

Magda Balazinska - CSE 344, Fall 2012

15

Vertical partitioning

® Separate data across multiple machines

® Machines hold different parts of the column
space

® Access to subsets of the column space are
are hopefully clustered (so queries don’t
span multiple machines)

Vertical partitioning

Resumes |SSN Name |Address |Resume |Picture
234234 (Mary |Huston |Clob1... |Blob1...

345345 | Sue Seattle |[Clob2... |Blob2...

345343 |Joan |Seattle |[Clob3... |Blob3...

234234 | Ann Portland |Clob4... |Blob4...

—_— .

SSN Name | Address SSN Resume SSN Picture
234234 |Mary |Huston 234234 | Clob1... 234234 | Blob1...
345345 | Sue Seattle 345345 | Clob2... 345345 | Blob2...

Consistency

® Do users need to see a consistent view of the data over time?
® Do different users need to see a consistent view of the data?
® Weak consistency means no

® Eventually consistency (weak for awhile, but eventually unified)

Relaxing consistency requirements and not
having transactions makes things easier

CAP theorem

® Data is Consistent

® Data is Available (every request receives
a response)

® Data can be served in the event of a
Partition
CAP Theorem: Can’t satisfy all three

You're big

® |f you have to do all this, you are bigger than 99%
of all web applications

® Your engineering process has evolved, your team is
much bigger

® But it’s all understandable
® |arge engineering headache

® What'’s the next scale up?

Megascale

R

amazon B® Microsoft

webservices™

There are companies that have scaled to over 100 million users with a
million CPUs

Market caps of $100+ billions
Engineering is very different. How is this done?

Guest lecture next Monday (1 1/26): Ari Steinberg, formerly of Facebook,
“Megascale Software Engineering at Facebook”

Take aways

® Scaling issues are “good” problems

® Don’t over-plan or over-execute too early (think “pure thoughts”)
® Buy bigger machines/more machines

® Caching to the rescue

® Database replication (but this is hard!)

® Transactions and strong consistency make this harder

® At “mega-scale” these techniques have problems too

