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Announcements

Deliverables for 11/19 release (due | 1:59PM)
® Documents up to date: req, arch, design, schedule
® Release notes

® Status report for the release (not due until |1/20) -- content should be
part of | [/2] presentation

Presentations on | 1/21: 7 minutes, same logistics as before. Deposit
presentations (pdf) in dropbox by | 1:59PM on 11/20

Final release due on 12/03




Release notes

® A description of what you just released
® High level, thematic description
®  Major functionality
® Exceptions of what might not be working
® How to access the release
® Approximately a “README”
® “We'’re proud to announce release |.4 of...”
® Largely for external consumption

® About | page




Project Presentations, | |/21 (7 minutes)

® Operations Review by manager or project manager-- similar to weekly status
but for the release cycle

® What did you say you were going to do? What did you do? (I minute)
®  What are you going to do in the next cycle? (I minute)

®  What are the issues? (I minute)

® What’s your current status on platforms and browsers?

® Report on a metric -- or if not in place, scale from | (disaster) - 10
(exceeding) and why (| minute)

® Demo (| minute)

® Questions and Answers (| minute)




Too much work?

Project
Homework

Platform/browser issues?

What to do!?

Talk to instructor or TA

No need to suffer/’complain” in silence




One-on-one’s

(tip of the day)

® Regularly scheduled meeting with your manager
(about once a week)

® Communication mechanism
® Weekly status update

® Other (strategic) issues

® Don’t discount the value

® Red flag if your boss isn’t doing this!?
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Things are working and you

are starting to grow...

Congratulations! You’ve deployed your application!
Things are working

You are starting to get customers/traffic/users
...system is slowing down! or crashing!

Good news: Success...You need to scale




Scale up

Monitor and measure

Fix the bugs

Tune

Replicate (stateless)

Cache

Database ar

chitecture




Measure and profile

® Unix command line tools (ps, top, vmstat,...)
® Munin

® Database tools

® | og files

® Django instrumentation tools




CPU utilization

Disk performance
Database health
Network utilization
Webserver traffic

Back end servers




Munin

(http://munin-monitoring.org/)

/‘ EMunin :: localdomain :: loca EFAQS ~ Charity Blossom *
€« C M [0 www.charityblossom.org/munin/localdomain/localhost.localdomain/index.html
Mon 00:00 Mon 12:00 2 23
Cur. Min: Avg: Max:
@ Comnitted transactions 20.83 16.24 28.20 54.68 Conmitted transactions
B Rolled back transactions 5.01 M Rolled back transactions

3.86 6.84 13.47
Last update: Mon Oct 29 18:45:11 2012

24 25 2 27 28 29
Cur: Min: Avg: Max:
20.08 8.38 28.85 56.54

4.82

1.89 7.001 13.93
Last update: Mon Oct 29 18:35:10 2012

:: PostgreSQL transactions

PostgreSQL transactions - by day

Trans / sec

@ Conmnitted transactions
B Rolled back transactions

Mon 00:00 Mon 12:00
cur Min: Avg: Max:
20.06 15.46 27.42 53.94

S5.01

A 6.84 13.47
Last update: Mon Oct 29 18:45:11 2012

PostgreSQL transactions - by week

Trans / sec

22 23

@ Connitted transactions
B Rolled back transactions

24 25 26 27 28 29
Cur: Min: Avg: Hax:
19.30 7.61 28.07 55.71

4.82

. 8 7.01 13.92
Last update: Mon Oct 29 18:35:11 2012

processes
:: Fork rate
Fork rate - by day Fork rate - by week
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Mon 00:00 Mon 12:00 22 23 24 25 2 27 28 29
cur: Min Avg: Max: cur: Min: Avg: Hax:
@ forks 7.03 5.90 8.94 15.55 @ forks 6.86 3.93 9.12 16.13
Last update: Mon Oct 29 18:45:04 2012 Last update: Mon Oct 29 18:35:04 2012

2 Number of threads

Niumhber of threzade - hv dav

Numhber of threzade - hv wesk




Code changes

® Fix bugs

® |Improve code/Change algorithms

® Database indexing/query optimization
® Database tuning

® System tuning




Bigger machines

® Bigger CPU

® More CPUs

® Bigger caches
® More memory
® More bandwidth

® Bigger database




Scale out

® Add more web servers

® Add more application servers
® More processes/threads?

® |[ssues

® Statefullness

® Server affinity




Caching

® Store read-only data in web server

® Content distribution network (read only data)

® Code changes to cache data in app server (avoid database round trips)
® Snippet caching (don’t generate html on every request)

® Memcached (distributed shared memory as a key value store)

® In general, bring (read only) data closer to the user




Scaling up through

caching

static content

cached content
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Aside: Rules of thumb
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But 2 years old!




When you outgrow a

single database

What are you going to do!




Scaling databases (RDBMSes

mostly)

® Likely culprit of scale, performance, response time
issues

® Can you stay on a single DB?

® Tuning, indices, bigger machines, more memory...

® Off load work from the RDBMS

e No!
® What to do now?

® Add more databases and partition (but this is sort of hard!)




Scale up through

replication

® Read/Write partitioning
® Horizontal scaling (sharding)

® Vertical scaling




Read/write partitioning

® Most accesses to your system might be reads (90% reads, 10% writes)
® Reads can proceed in parallel

®  Writes block readers and writers

® Replicate databases with multiple copies that can be read from

® Allow writes only to one instance (master)

® Have to propagate writes to read copies

® Consistency issue!




Read/write partitioning
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Horizontal partitioning

(sharding)

® Separate data across multiple machines
® Schema replication

® Machines hold full rows of data

® Rows are split across machines

e Know which rows are on which machines
(“hash a primary key to a machine”)




Rorizontal partitioning

| SSN Name | City

1234234 |Mary | Houston

1345345 | Sue Seattle
SSN Name | City

| 345343 | Joan | Seattle

| 234234 | Ann Portland

Customers
SSN Name | City
234234 |Mary | Houston
345345 | Sue Seattle
345343 | Joan | Seattle
234234 | Ann Portland
-- Frank | Calgary
-- Jean | Montreal

Magda Balazinska - CSE 344, Fall 2012

15




Vertical partitioning

® Separate data across multiple machines

® Machines hold different parts of the column
space

® Access to subsets of the column space are
are hopefully clustered (so queries don’t
span multiple machines)




Vertical partitioning

Resumes |SSN Name |Address |Resume |Picture
234234 (Mary |Huston |Clob1... |Blob1...

345345 | Sue Seattle |[Clob2... |Blob2...

345343 |Joan |Seattle |[Clob3... |Blob3...

234234 | Ann Portland |Clob4... |Blob4...

—_— .

SSN Name | Address SSN Resume SSN Picture
234234 |Mary |Huston 234234 | Clob1... 234234 | Blob1...
345345 | Sue Seattle 345345 | Clob2... 345345 | Blob2...




Consistency

® Do users need to see a consistent view of the data over time?
® Do different users need to see a consistent view of the data?
® Weak consistency means no

® Eventually consistency (weak for awhile, but eventually unified)

Relaxing consistency requirements and not
having transactions makes things easier




CAP theorem

® Data is Consistent

® Data is Available (every request receives
a response)

® Data can be served in the event of a
Partition
CAP Theorem: Can’t satisfy all three




You're big

® |f you have to do all this, you are bigger than 99%
of all web applications

® Your engineering process has evolved, your team is
much bigger

® But it’s all understandable
® |arge engineering headache

® What'’s the next scale up?




Megascale

R

amazon B® Microsoft

webservices™

There are companies that have scaled to over 100 million users with a
million CPUs

Market caps of $100+ billions
Engineering is very different. How is this done?

Guest lecture next Monday (1 1/26): Ari Steinberg, formerly of Facebook,
“Megascale Software Engineering at Facebook”




Take aways

® Scaling issues are “good” problems

® Don’t over-plan or over-execute too early (think “pure thoughts”)
® Buy bigger machines/more machines

® Caching to the rescue

® Database replication (but this is hard!)

® Transactions and strong consistency make this harder

® At “mega-scale” these techniques have problems too




