
CSE 403
Scale

Announcements

• Deliverables for 11/19 release (due 11:59PM)

• Documents up to date: req, arch, design, schedule

• Release notes

• Status report for the release (not due until 11/20) -- content should be
part of 11/21 presentation

• Presentations on 11/21: 7 minutes, same logistics as before. Deposit
presentations (pdf) in dropbox by 11:59PM on 11/20

• Final release due on 12/03

Release notes
• A description of what you just released

• High level, thematic description

• Major functionality

• Exceptions of what might not be working

• How to access the release

• Approximately a “README”

• “We’re proud to announce release 1.4 of...”

• Largely for external consumption

• About 1 page

Project Presentations, 11/21 (7 minutes)

• Operations Review by manager or project manager-- similar to weekly status
but for the release cycle

• What did you say you were going to do? What did you do? (1 minute)

• What are you going to do in the next cycle? (1 minute)

• What are the issues? (1 minute)

• What’s your current status on platforms and browsers?

• Report on a metric -- or if not in place, scale from 1(disaster) - 10
(exceeding) and why (1 minute)

• Demo (1 minute)

• Questions and Answers (1 minute)

Too much work?

• Project

• Homework

• Platform/browser issues?

• What to do?

• Talk to instructor or TA

• No need to suffer/”complain” in silence

One-on-one’s
(tip of the day)

• Regularly scheduled meeting with your manager
(about once a week)

• Communication mechanism

• Weekly status update

• Other (strategic) issues

• Don’t discount the value

• Red flag if your boss isn’t doing this?

CSE 403
Scale

Things are working and you
are starting to grow...

• Congratulations! You’ve deployed your application!

• Things are working

• You are starting to get customers/traffic/users

• ...system is slowing down! or crashing!

• Good news: Success...You need to scale

Scale up

• Monitor and measure

• Fix the bugs

• Tune

• Replicate (stateless)

• Cache

• Database architecture

Measure and profile

• Unix command line tools (ps, top, vmstat,...)

• Munin

• Database tools

• Log files

• Django instrumentation tools

Munin

• CPU utilization

• Disk performance

• Database health

• Network utilization

• Webserver traffic

• Back end servers

Munin
(http://munin-monitoring.org/)

Code changes

• Fix bugs

• Improve code/Change algorithms

• Database indexing/query optimization

• Database tuning

• System tuning

Bigger machines

• Bigger CPU

• More CPUs

• Bigger caches

• More memory

• More bandwidth

• Bigger database

Scale out

• Add more web servers

• Add more application servers

• More processes/threads?

• Issues

• Statefullness

• Server affinity

Caching

• Store read-only data in web server

• Content distribution network (read only data)

• Code changes to cache data in app server (avoid database round trips)

• Snippet caching (don’t generate html on every request)

• Memcached (distributed shared memory as a key value store)

• In general, bring (read only) data closer to the user

Scaling up through
caching

database server/
database

application serversweb servers

load
balancer

static content

cached content
db tuningcdn node

memcached

web server
application

server

Aside: Rules of thumb

But 2 years old!

When you outgrow a
single database

What are you going to do?

Scaling databases (RDBMSes
mostly)

• Likely culprit of scale, performance, response time
issues

• Can you stay on a single DB?

• Tuning, indices, bigger machines, more memory...

• Off load work from the RDBMS

• No?

• What to do now?

• Add more databases and partition (but this is sort of hard!)

Scale up through
replication

• Read/Write partitioning

• Horizontal scaling (sharding)

• Vertical scaling

Read/write partitioning

• Most accesses to your system might be reads (90% reads, 10% writes)

• Reads can proceed in parallel

• Writes block readers and writers

• Replicate databases with multiple copies that can be read from

• Allow writes only to one instance (master)

• Have to propagate writes to read copies

• Consistency issue?

Read/write partitioning

Horizontal partitioning
(sharding)

• Separate data across multiple machines

• Schema replication

• Machines hold full rows of data

• Rows are split across machines

• Know which rows are on which machines
(“hash a primary key to a machine”)

Horizontal partitioning

Vertical partitioning

• Separate data across multiple machines

• Machines hold different parts of the column
space

• Access to subsets of the column space are
are hopefully clustered (so queries don’t
span multiple machines)

Vertical partitioning

Consistency

• Do users need to see a consistent view of the data over time?

• Do different users need to see a consistent view of the data?

• Weak consistency means no

• Eventually consistency (weak for awhile, but eventually unified)

Relaxing consistency requirements and not
having transactions makes things easier

CAP theorem

• Data is Consistent

• Data is Available (every request receives
a response)

• Data can be served in the event of a
Partition

CAP Theorem: Can’t satisfy all three

You’re big

• If you have to do all this, you are bigger than 99%
of all web applications

• Your engineering process has evolved, your team is
much bigger

• But it’s all understandable

• Large engineering headache

• What’s the next scale up?

Megascale

• There are companies that have scaled to over 100 million users with a
million CPUs

• Market caps of $100+ billions

• Engineering is very different. How is this done?

• Guest lecture next Monday (11/26): Ari Steinberg, formerly of Facebook,
“Megascale Software Engineering at Facebook”

Take aways

• Scaling issues are “good” problems

• Don’t over-plan or over-execute too early (think “pure thoughts”)

• Buy bigger machines/more machines

• Caching to the rescue

• Database replication (but this is hard!)

• Transactions and strong consistency make this harder

• At “mega-scale” these techniques have problems too

